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In this paper, a weak Galerkin finite element method for solving the time fractional 
reaction-convection diffusion problem is proposed. We use the well known L1 discretization 
in time and a weak Galerkin finite element method on uniform mesh in space. Both 
continuous and discrete time weak Galerkin finite element method are considered and 
analyzed. The stability of the discrete time scheme is proved. The error estimates for both 
schemes are given. Finally, we give some numerical experiments to show the efficiency of 
the proposed method.
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1. Introduction

In this paper, we will consider the weak Galerkin finite element method for the following time fractional diffusion 
equations with variable coefficients⎧⎪⎨

⎪⎩
C
0 Dt

νu(x, t) − ∇ · (K (x, t)∇u(x, t)) + ∇ · (bu(x, t)) + cu(x, t) = f (x, t) in Q T = Ω × J ,

u(x,0) = g(x), x ∈ Ω

u(x, t) = 0 on ∂Ω × [0, T ],
(1)

where Ω is a polygonal or a polyhedral domain in Rd(d = 2, 3) with boundary ∂Ω and J = (0, T ]. The fractional derivative 
C
0 Dt

νu(x, t) is the Caputo fractional derivative of order ν ∈ (0, 1] defined below. The given functions f (x, t), g(x), b(x) and 
c(x) are smooth functions. For the stability of the problem, we assume that b ∈ [W 1,∞(Ω)]d and there exists a positive 
constant a such that c + 1

2 ∇ · b ≥ a > 0. Assume also that the matrix K is symmetric and positive definite in the sense that 
there is a constant k > 0 such that

kw T w ≤ w T K w, ∀w ∈Rd. (2)

The problem (1) is well-posed [12], [8]. For easy presentation, we will only consider two-dimensional problems (i.e., d = 2). 
We shall denote by C

0 Dt
νu(x, t) the Caputo fractional derivative of order ν ∈ (0, 1] with respect to the time t defined by 

[10], [36]
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C
0 Dt

νu(x, t) = 1

�(1 − ν)

t∫
0

(t − s)1−ν ∂u

∂s
u(x, s)ds, t > 0.

The other commonly used fractional derivative is the Riemann-Lioville derivative defined as [10], [36]

R
0 Dt

νu(x, t) = 1

�(n − ν)

∂n

∂tn

t∫
0

(t − s)n−1−νu(x, s)ds, t > 0, ν ∈ (n − 1,n]. (3)

Over the last few decades, fractional calculus has been attracted an increasing attention and many important phenomena 
in various scientific areas such as physical and biological systems are described by fractional differential models [10], [36]. 
The fractional diffusion process is an important example in subdiffusion model where the diffusion is anomalously slow 
which can be modelled by fractional partial differential equation (1). Anomalous diffusion problems can be modelled by 
Brownian motion and Langevin equations with fractional time and variable diffusion coefficient which leads to a fractional 
power law scaling in time [7]. These problems can also be used in applications such as porous flows, biological processes 
and financial systems [19]. In a series of papers [24], [25], [26], [27], [29], [28], Ray studied and analyzed complex problems 
and systems governed by anomalous diffusion equation with Riesz fractional derivatives. In [24], the author developed 
numerical solutions of fractional Fokker–Planck equations with Riesz space fractional derivatives using shifted Grünwald 
approximation and fractional centred difference approaches in a finite domain. The author investigated the implicit finite 
difference scheme to approximate the Riesz fractional derivative and a novel modified optimal homotopy asymptotic method 
with Fourier transform to compute the numerical solution of Riesz fractional nonlinear Schrödinger equation in [25]. A time-
splitting spectral approximation method for Chen-Lee-Liu equation with Riesz fractional derivative has been studied in [27]
and it is proved that the proposed method is efficient, unconditionally stable and second-order of convergence rate in both 
time and space. Recently, the author proposed operational matrices based on two-dimensional Legendre wavelets for solving 
the variable-order fractional integro-differential equations and established the convergence analysis an error estimate for the 
method in [29]. The similarity method using fractional centred difference method and weighted shifted Grüwald-Letnikov 
difference method for reducing equations has been used for solving fractional Keller-Segel model with a nonlocal fractional 
Laplace operator which represents the fractional diffusion process [28].

When the diffusion coefficient K (x, t) is constant, there exist many papers devoted to numerical approximations of the 
problem (1). A finite difference method for a diffusion-wave system by transforming the original equation into a low order 
system of equations with introducing new variables has been studied by Sun and Wu [30]. The finite element method 
with non smooth data has been considered by Jin et al. in [9]. Numerical methods in two dimension with variable-order 
fractional time derivative have been proposed in [2]. An implicit solution method has been analyzed in [11]. On the other 
hand, there are few papers in the literature for the numerical solution of the model problem (1) with variable diffusion 
coefficient because some difficulties arise due to the variable diffusivity. In one-dimensional case, a finite difference method 
with convergence rate of O(hk +τ 2)(k ∈ {2, 4}) for the time fractional diffusion equations has been studied in [1], a compact 
exponential numerical method with convergence rate of O(h4 +τ 2−ν) for the time fractional convection-diffusion equations 
with variable coefficients has been proposed in [5], where τ is the temporal step size and h is space step size. For the time 
fractional diffusion problems with variable coefficients, Mustapha et al. [23] investigated a piecewise linear, time stepping 
discontinuous Galerkin with convergence of order O(h2 + τ 2− ν

2 ) which order ν
2 from being optimal in time due to the 

initial layer of the solution. In relation, Liu et al. [16], [17], [18] studied on integrability, analysis and generalized of the 
time fractional nonlinear diffusion problems. Yang [35] proposed a new integral transform operator to solve analytically the 
heat-diffusion problem when ν = 1. Yang et al. [37] discussed the analytical solutions of anomalous diffusion equations 
with the Caputo-Fabrizio fractional derivative in time with the help of the Laplace transform.

The main purpose of this paper is to study, both theoretically and computationally, the weak Galerkin finite element 
method for the time fractional reaction-diffusion-convection problem with variable coefficients. The weak Galerkin finite 
element method is a newly developed method based on the so called weak function spaces and discrete weak gradient 
operators. The main feature of this method lies in using completely discontinuous spaces for approximations in the frame-
work of the finite element method. Because of this feature, the weak Galerkin finite element method is more suitable than 
the conventional finite element method for approximation of discontinuous solutions of problems on more complicated do-
mains. Compared with the traditional discontinuous Galerkin methods which have sufficiently large penalty parameter for 
the stability, the weak Galerkin finite element method has parameter-free formulation. This method initially was proposed 
in [33], [34] and later has been used for solving parabolic equation [13], Biharmonic equation [31], [32], Helmholtz equation 
[20], [21], Darcy-Stokes equation [4] [15] and time-harmonic Maxwell’s equations [22].

The rest of the paper is organized as follows. Section 2 introduces some notation, the discrete weak gradient, the discrete 
weak divergence and weak finite element spaces and the continuous time weak Galerkin finite element approximation for 
the problem (1). Section 3 contains a finite difference approximation of the fractional time derivative and the discrete time 
weak Galerkin finite element scheme and the stability of this scheme. In section 4, we establish the optimal order error 
estimates for the continuous and discrete time weak Galerkin method in L2 norm. A new Gronwall type inequality which 
is the key ingredient in proving error estimate for the discrete time weak Galerkin scheme is also given in this section. We 
conclude the paper with some numerical examples to illustrate the theoretical results.
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2. The weak Galerkin finite scheme

We use the standard Sobolev spaces H p(S), p ≥ 0 for any polyhedron S ⊂ Ω . We denote the associated inner product 
(·, ·)p,S , norms ‖ · ‖p,S and semi-norms | · |p,S given by, respectively

‖u‖p,S =
( p∑

m=0

|u|2m,S

)1/2
and |u|p,S =

( ∑
|α|=p

∫
S

|∂αu|2 dx
)1/2

,

where α = (α1, . . . , αn), |α| = ∑n
j=1 α j , ∂α = ∂

α1
x1 . . . ∂

αn
xn . When p = 0, the Hilbert space H p(S) will be the space of square 

integrable functions L2(S) and we suppress the subscript p in the inner product, semi-norm and norm notation in this case. 
Furthermore, we use the abbreviation ‖ · ‖ when S = Ω and p = 0.

Let Th be a partition of the domain consisting of closed and simply connected polygon elements T . Let Eh be the set of 
all edges in Th , and E0

h be the set of all interior edges and hT be the diameter of element T with h = maxT ∈Th hT .
We introduce the space of discrete weak functions and the discrete weak gradient operator introduced in [33]. Let Pk(T )

be the set of polynomials on T ∈ Th of degree at most k and Pk(∂T ) be the space of polynomials on ∂T of degree at most k. 
A discrete weak function space W (T , k) consists of weak functions v = {v0, vb} on T such that v0 ∈ L2(T ) and vb ∈ L∞(∂T ). 
For given k ≥ 1, let Sh(k) be the weak Galerkin finite element space defined by

Sh(k) = {v = {v0, vb} ∈ W (T ,k) : v0 ∈ Pk(T ), vb ∈ Pk(e) for all edge e ⊂ ∂T , T ∈ Th} (4)

and a subspace S0
h(k) of Sh(k) such that

S0
h(k) = {v : v ∈ Sh(k), vb = 0 on ∂Ω}. (5)

We remark that the first component of v , namely v0, is the value of v in the interior of T , and the second component vb
is the single value on the edges of the boundary of T which is not necessarily the trace of v0 on the boundary.

For any v = {v0, vb} ∈ Sh(k), we define the weak gradient ∇w v ∈ [Pk−1(T )]2 of v on T as the unique polynomial given 
by

(∇w v,q)T = −(v0,∇ · q)T + 〈vb,q · n〉∂T ∀q ∈ [Pk−1(T )]2, (6)

where n is the unit outward normal direction to ∂T . For any v = {v0, vb} ∈ Sh(k), we define the weak divergence ∇w · (bv) ∈
Pk(T ) of v related to b on T as the unique polynomial given by

(∇w · (bv), z)T = −(bv0,∇z)T + 〈b · nvb, z〉∂T ∀z ∈ Pk(T ). (7)

In order to analyze and investigate the proposed method, we introduce element-wise defined four L2 projections. We 
first define two local projections as: Q 0 : L2(T ) → Pk(T ) and Q b : L2(∂T ) → Pk(∂T ) for each element T ∈ Th . The third one 
is the L2 projection on the local weak gradient space defined as Qh : [L2(T )]2 → [Pk−1(T )]2 for each element T . The fourth 
projection operator for the solution u is defined by Q h v = {Q 0 v, Q b v} ∈ Sh(k).

For the sake of simplicity, we adopt the following notations,

(
u, v

) =
∑

T ∈Th

(
u, v

)
T =

∑
T ∈Th

∫
T

uv dx,

〈u, v〉 =
∑

T ∈Th

〈u, v〉T =
∑
T ∈Th

∫
∂T

uv ds.

The standard weak form of (1) can be formulated, after multiplying by v ∈ H1
0(Ω) and integration by parts, as follows

{(
C
0 Dt

νu, v
)

+
(

K∇u,∇v
)

− (bu,∇v) + (cu, v) = ( f , v), ∀v ∈ H1
0(Ω), t ∈ J ,

u(x,0) = g(x), x ∈ Ω.
(8)

Here, the solution u to the problem (8) is called weak solution and the existence and uniqueness of the weak solution for 
the problem (8) can be found in [14].

The semi-discrete continuous time weak Galerkin finite element method for the problem (1) can be formulated by 
replacing the standard gradient and divergence operator in the weak form (8) with the weak gradient and divergence 
operators as follows:
3
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Algorithm 1 The weak Galerkin scheme for the time fractional convection-diffusion-reaction problem.

The WG-FEM for the problem (1) is to find uh(t) = {u0(., t), ub(., t)} ∈ S0
h(k) satisfying uh(0) = Q h g and the following equation:

(
C
0 Dt

νuh(t), v0

)
+ a(uh(t), v) = ( f , v0), ∀v = {v0, vb} ∈ S0

h(k), (9)

where

a(u, v) = a1(u, v) + sc(u, v) + sd(u, v), (10)

with

a1(u, v) = (K∇w u,∇w v) + (∇w · (bv), v0) + (cu0, v0),

sc(u, v) =
∑

T ∈Th

(b · n(u0 − ub), v0 − vb)∂+T ,

sd(u, v) =
∑

T ∈Th

h−1
T (u0 − ub, v0 − vb)∂T ,

and

∂+T = {y ∈ ∂T : b(y) · n(y) ≥ 0}.
We have two stabilizer terms in our formulation of the bilinear form a(·, ·). The first stabilizer sc(·, ·) for convection 

term has simpler and upwinding-type structure while the second stabilizer sd(·, ·) is controlling the jump between u0 and 
ub on the boundary of the element T . Note that unlike the most existing discontinuous Galerkin methods that assume the 
convection term b is either constant or divergence-free and the weak Galerkin method proposed in [3], our method does 
not insist on extra requirements.

We accordingly define the energy norm for any u ∈ S0
h(k) as follows

|||u|||2 =
∑

T ∈Th

‖∇w u‖2
T +

∑
T ∈Th

∥∥∥|b · n|1/2(u0 − ub)

∥∥∥2

∂T
+ ‖u0‖2 + sd(u, u). (11)

The bilinear form a(·, ·) is continuous and coercive with respect to the norm given by (11).

Lemma 2.1. For u, v ∈ S0
h(k), there are constants C1, C2 > 0 such that

a(u, v) ≤ C1|||u||| |||v|||, (12)

a(u, u) ≥ C2|||u|||2. (13)

Proof. The continuity (12) of the bilinear form follows easily from the definition of the bilinear form and the norm. We 
show the coercivity (13) of the bilinear form. It follows from the definition of the weak divergence (7) and integration by 
parts that for any v = {v0, vb} ∈ S0

h(k)

(∇w · (bv), v0) = (−bv0,∇v0) + 〈b · nvb, v0〉
= (∇ · bv0, v0) + (bv0,∇v0) − 〈b · n(v0 − vb), v0〉
= (∇ · bv0, v0) − (∇w · (bv), v0) + 〈b · nvb, v0〉 − 〈b · n(v0 − vb), v0〉
= (∇ · bv0, v0) − (∇w · (bv), v0) − 〈b · n(v0 − vb), v0 − vb〉,

which implies that

(∇w · (bv), v0) = 1

2
(∇ · bv0, v0) − 1

2
〈b · n(v0 − vb), v0 − vb〉, (14)

where we used the facts that 〈b · nvb, vb〉 = 0.
4
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Using (2) and (14), we have

a(v, v) = (K∇w v,∇w v) +
((

c + 1

2
∇ · b

)
v0, v0

)
− 1

2
〈b · n(v0 − vb), v0 − vb〉 + sc(v, v) + sd(v, v)

≥ k(∇w v,∇w v) + a(v0, v0) + 1

2

∑
T ∈Th

∥∥∥|b · n|1/2(u0 − ub)

∥∥∥2

∂T
+ sd(v, v)

≥ C2|||v|||2,
where C2 = min{k, a, 12 }. We complete the proof. �

3. A finite difference method for time discretization

We first discretize the Caputo time fractional derivative by using a finite difference method. Let tm := mτ , m =
0, 1, . . . , M where τ := T

M is the time step. Let Um ∈ Sh(k) be the numerical solution of u(tm). Based on a piecewise linear
interpolation, a numerical scheme of the Caputo fractional derivative is given by

C
0 Dν

tm
u(x, tm) = 1

�(1 − ν)

tm∫
0

(tm − s)−ν ∂u

∂s
u(x, s)ds

= 1

�(1 − ν)

m∑
k=1

u(x, tk) − u(x, tk−1

τ

tk∫
tk−1

(tm − s)−ν ds + Rm

= τ−ν

�(2 − ν)

m∑
k=1

bm−k(u(x, tk) − u(x, tk−1)) + Rm (15)

= τ−ν

�(2 − ν)

(
b0u(x, tm) −

m−1∑
k=1

(bm−k−1 − bm−k)u(x, tk) − bm−1u(x, t0)
)

+ Rm (16)

:= Lν
t u + Rm (17)

where b j = ( j + 1)1−ν − j1−ν, j ≥ 0. The truncation error Rk has the following expressing.

Theorem 3.1. [30] If u ∈ C2[0, T ], then the truncation error Rk satisfies

|Rm| ≤ Cτ 2−ν max
t∈[0,tm] |u

′′(t)|, (18)

where C = 1

1 − ν
(

1 − ν

12
+ 22−ν

2 − ν
− (1 + 2−ν)).

Next, we consider the fully discrete time weak Galerkin finite element scheme for (8). Find Um ∈ Sh(k) such that

(Lν
t Um

0 , v0) + a(Um, v) = ( f m, v0), ∀v ∈ S0
h(k). (19)

Using the approximation Lν
t in (17), we can rewrite the scheme (19) as

(Um
0 , v0) + c0a(Um, v) =

m−1∑
k=1

(bm−k−1 − bm−k)(Uk
0, v0) + bm−1(U 0

0, v0) + ( f m, v0) (20)

where c0 = τ ν�(2 − ν) and f m = f (x, tm). Using the following properties of the coefficients b j

b j > 0, j = 0,1, . . . ,m,

b1 > b2 > · · · > bm, b0 = 1, bm → ∞,

m+1∑
j=1

(b j−1 − b j) + bm+1 = (1 − b1) +
m∑

j=2

(b j−1 − b j) + bm = 1,

(21)

we will prove the stability of the time discrete weak Galerkin method (20) in the next theorem. We will assume f ≡ 0 in 
proving the stability estimate in the next theorem for simplicity.
5
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Theorem 3.2. The fully time discrete weak Galerkin finite element scheme (20) is unconditionally stable and we have

||Um
0 || ≤ (

1

1 + c0C2
)1/2‖U 0

0‖ (22)

where c0 = �(2 − ν)τ ν and C2 is given in (13).

Proof. The result will be proved by induction. For m = 1, taking v = U 1 in (20), we have

(U 1
0, U 1

0) + c0a(U 1, U 1) = (U 0
0, U 1

0).

Using Lemma 2.1 and Cauchy-Schwarz inequality, we have

||U 1
0 || ≤ 1

1 + c0C2
‖U 0

0‖.

Assume that (22) holds for m = 1, . . . , M − 1. We will show that (22) holds also for m = M . Choosing v = U M in (20) leads 
to

(U M
0 , U M

0 ) + c0a(U M , U M) =
M−1∑
k=1

(bM−k−1 − bM−k)(Uk
0, U M

0 ) + bm−1(U 0
0, U M

0 )

≤
M−1∑
k=1

(bM−k−1 − bM−k)
‖Uk

0‖2 + ‖U M
0 ‖2

2
+ bm−1

‖U 0
0‖2 + ‖U M

0 ‖2

2

=
M−1∑
k=1

(bM−k−1 − bM−k)‖Uk
0‖2 + bm−1‖U 0

0‖2.

Using the induction assumption, the properties of the coefficients (21) and Lemma 2.1, we obtain

‖U M
0 ‖2 ≤ 1

1 + c0C2

( M−1∑
k=1

(bM−k−1 − bM−k) + bm−1

)
‖U 0

0‖2 = 1

1 + c0C2
‖U 0

0‖2.

Thus, the proof is completed by taking the square root of both sides. �

4. Error analysis

This section deals with the optimal order error estimates for the continuous weak Galerkin finite element scheme (9)
and discrete time weak Galerkin finite element method (19) in L2 norm. First, we define the elliptic or Ritz projection Rhu
of u ∈ H1

0(Ω) ∩ H2(Ω) onto the discrete weak space S0
h satisfying the equation

a(Rhu, v) = (−∇ · (K∇u), v) + (∇ · (bu), v) + (u, v), ∀v ∈ S0
h(k). (23)

In fact Rhu is the weak Galerkin finite element solution of the corresponding elliptic problem:

−∇ · (K∇u) + ∇ · (bu) + cu = F in Ω,

u = 0 on ∂Ω.
(24)

We then have the following error estimate for Rhu.

Lemma 4.1. [13] Let u ∈ H1+k(Ω) be the exact solution of (24) and Rhu be the elliptic projection defined by (23). Let Q hu =
{Q 0u, Q bu}. Then there exists a constant C such that

‖Q 0u − Rhu‖ ≤ Chk+1‖u‖k+1, (25)

and

‖∇w(Q hu − Rhu)‖ ≤ Chk‖u‖k+1. (26)
6



Ş. Toprakseven Applied Numerical Mathematics 168 (2021) 1–12
We first prove an error estimate for the continuous time semidiscrete problem of (9). For the sake of simplification and 
to avoid the long algebra, we consider the zero initial condition, i.e., g ≡ 0 for the continuous time weak Galerkin finite 
element approximation.

It is well known that the Riemann-Lioville and the Caputo fractional derivatives agree if the initial condition is zero, i.e., 
the following relation holds true [6]

R
0 Dt

νu(t) = C
0 Dt

νu(t), if u(0) = 0, ν ∈ (0,1]. (27)

The following lemma will be useful in the sequel.

Lemma 4.2. [6] If ν ∈ (0, 1) and u ∈ Hν((0, T ), L2(Ω)), then we have

T∫
0

(
R
0 Dt

νu(t), u(t)
)

L2(Ω)
dt =

T∫
0

(
R
0 Dt

ν/2u(t), R
0 Dt

ν/2u(t)
)

L2(Ω)
dt.

We are now ready to state and prove the error estimates for the continuous time weak Galerkin finite element scheme 
(9) in L2 norm.

Theorem 4.3. Suppose that u and uh are the solutions of the problem (1) and the continuous time weak Galerkin finite element scheme 
(9), respectively. Let e = uh − Q hu be the error between the continuous time weak Galerkin approximation and the L2 projection of 
the exact solution u. Then there is a positive constant C such that

T∫
0

‖C
0 Dt

ν/2e‖2
L2(Ω)

dt ≤ Ch2(k+1)

T∫
0

‖C
0 Dt

ν/2u‖2
k+1 dt. (28)

Proof. We write

e = θ(t) + ρ(t), where θ(t) = uh − Rhu, ρ(t) = Rhu − Q hu.

The error term ρ can be easily bounded by Lemma 4.1 as follows

T∫
0

‖C
0 Dt

ν/2ρ(t)‖2
L2(Ω)

dt ≤ Ch2(k+1)

T∫
0

‖C
0 Dt

ν/2u‖2
k+1 dt. (29)

We will estimate θ . Using the definition of bilinear form, we have for any v ∈ S0
h(k)

(C
0 Dt

νθ, v) + a(θ, v) = (C
0 Dt

νuh, v) + a(uh, v) − (C
0 Dt

ν Rhu, v) − a(Rhu, v)

= ( f , v) − (C
0 Dt

ν Rhu, v) − a(Rhu, v)

= (C
0 Dt

νu, v) − (C
0 Dt

ν Rhu, v) = (C
0 Dt

νρ, v),

which implies that

(C
0 Dt

νθ, v) + a(θ, v) = (C
0 Dt

νρ, v), ∀v ∈ S0
h(k). (30)

Here, we used the fact that the projection Rh commutes with the fractional derivative. Choosing v = θ ∈ S0
h(k) in the above 

equation (30) and integrating on [0, T ], we have

T∫
0

(C
0 Dt

νθ, θ)dt +
T∫

0

a(θ, θ)dt =
T∫

0

(C
0 Dt

νρ, θ)dt.

Using the relation (27), Lemma 4.2 and the coercivity of the bilinear form a(·, ·) in (2.1) along with the Arithmetic-Geometric 
mean inequality, we arrive at

T∫
0

‖R
0 Dt

ν/2θ‖2
L2(Ω)

dt + C

T∫
0

|||θ |||2 dt =
T∫

0

(R
0 Dt

ν/2ρ, R
0 Dt

ν/2θ)dt

≤
T∫

0

Cδ‖R
0 Dt

ν/2ρ‖2
L2(Ω)

dt + δ

T∫
0

‖R
0 Dt

ν/2θ‖2
L2(Ω)

dt
7
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for sufficiently small δ > 0. Then we obtain

T∫
0

‖R
0 Dt

ν/2θ‖2
L2(Ω)

dt ≤ C

T∫
0

‖R
0 Dt

ν/2ρ‖2
L2(Ω)

dt (31)

Using the bound (29), we have

T∫
0

‖R
0 Dt

ν/2θ‖2
L2(Ω)

dt ≤ Ch2(k+1)

T∫
0

‖C
0 Dt

ν/2u‖2
k+1 dt. (32)

Finally, combining the estimates (29) and (32) gives the desired result. Thus we complete the proof. �

We next prove the error estimates for the discrete time weak Galerkin finite element scheme (20) in L2-norm.
The following lemma which establishes a new Gronwall-type inequality will be used in proving the error estimate.

Lemma 4.4. [9] Suppose that the nonnegative sequences {un, gn : n ∈N} satisfy

Lν
t un ≤ λ1un + λ2un−1 + gn, n ≥ 1,

where λ1, λ2 is nonnegative constants. Then there is a positive constant τ ∗ such that, when τ ≤ τ ∗ , we have

un ≤ 2
(

u0 + tνn
�(1 + ν)

max
0≤k≤n

gk

)
Eν(2λtνn ), n ∈ [1, N], (33)

where Eν(z) = ∑∞
k=0

zk

�(1 + kν)
is the Mittag-Leffler function and λ = λ1 + λ2

(2 − 21−ν)
.

Theorem 4.5. Assume that u(tm) is the solution of the problem (1) and Um is the solution of the discrete time weak Galerkin scheme 
(20). Then there is a positive constant t0 such that for all tm ≤ t0

‖Um − Q hu(tm)‖ ≤ C
(
‖U 0 − Q hu(0)‖ + Chk+1

(
‖ut(0) − Q 0ut(0)‖ + ‖ut(m) − Q 0ut(m)‖ + ‖g‖k+1

+
tm∫

0

‖ut‖k+1 + ‖C
0 Dν

tm
u‖k+1

)
+ T ντ 2−ν

�(1 + ν)
max

0≤t≤tm

|∂
2u

∂t2
|
)
.

Proof. The exact solution um = u(tm) satisfies the following equation

(Lν
t um, v0) + a(um, v) = ( f m, v0) + (Rm, v0), ∀v ∈ S0

h(k) (34)

where Rm is the truncation error given by (18).
As before, we let em = Q hu(tm) −Um = Rhu(tm) −Um + Q hu(tm) − Rhu(tm) = θm +ρm . Using Lemma 4.1, we can estimate 

ρm = ρ(tm) as

‖ρ(tm)‖ = Chk+1(‖ut(m) − Q 0ut(m)‖ + ‖g‖k+1 +
tm∫

0

‖ut‖k+1). (35)

Subtracting the equation (34) from the numerical scheme (19) gives

(Lν
t θm

0 , v0) + a(θm, v) = (Lν
t (Rhu(tm) − um), v0) + (Rm, v0), ∀v ∈ S0

h(k). (36)

Taking v = θm in the above equation (36), we have

(Lν
t θm, θm) + a(θm, θm) = (Lν

t (Rhu(tm) − um), θm) + (Rm, θm)

≤ 1

2
‖Lν

t (Rhu(tm) − um)‖2 + ‖θm‖2 + 1

2
‖Rm‖2

≤ ‖θm‖2 + C
(
τ 2−ν max

0≤t≤tm

|∂
2u

∂t2
| + hk+1‖C

0 Dν
tm

u‖k+1

)2
,

(37)

where we have used the remainder error (18) and the fact that
8



‖Lν
t Rhu(tm) − C

0 Dtm
νu‖ ≤ ‖Lν

t Rhu(tm) − C
0 Dν

tm
Rhu‖ + ‖C

0 Dν
tm

Rhu − C
0 Dν

tm
u‖

≤ C
(
τ 2−ν max

0≤t≤tm

|∂
2u

∂t2
| + hk+1‖C

0 Dν
tm

u‖k+1

)
.

Moreover, using the properties of coefficients b j given in (21), we obtain

(Lν
t θm, θm) = τ−ν

�(2 − ν)

(
b0θ

m −
m−1∑
k=1

(bm−k−1 − bm−k)ek − bm−1e0, θm
)

≥ τ−ν

�(2 − ν)

(
b0‖θm‖2 −

m−1∑
k=1

(bm−k−1 − bm−k)
‖ek‖2 + ‖θm‖2

2
− bm−1

‖e0‖2 + ‖θm‖2

2

)

= τ−ν

2�(2 − ν)

(
b0‖θm‖2 −

m−1∑
k=1

(bm−k−1 − bm−k)‖ek‖2 − bm−1‖e0‖2
)

= 1

2
Lν

t ‖θm‖2.

(38)

From (37) and (38), we have

Lν
t ‖θm‖2 ≤ ‖θm‖2 + C

(
τ 2−ν max

0≤t≤tm

|∂
2u

∂t2
| + hk+1‖C

0 Dν
tm

u‖k+1

)2
.

By Lemma 4.4, there is a positive constant τ ∗ such that for all τ ≤ τ ∗ it holds that

‖θm‖2 ≤ C
(
‖θ0‖2 + T ν

�(1 + ν)

(
τ 2−ν max

0≤t≤tm

|∂
2u

∂t2
| + hk+1‖C

0 Dν
tm

u‖k+1

)2)
.

With the aid of Lemma 4.1, we estimate ‖θ0‖ = ‖θ(0)‖ as follows

‖θ(0)‖ = ‖U 0 − Rhu(0)‖ ≤ ‖U 0 − Q hu(0)‖ + ‖Rhu(0) − Q hu(0)‖
≤ ‖U 0 − Q hu(0)‖ + Chk+1(‖ut(0) − Q 0ut(0)‖ + ‖g‖k+1).

Combining (35) and the last inequalities complete the proof. �

5. Numerical experiments

In this section, we give some numerical results to present the error e between the numerical solution uh and the 
projection Q hu. We use a uniform triangulation mesh Th and the discrete weak space Sh(0). That is, piecewise constants 
on the triangles and their edges will be used. For simplicity, we take Ω = [0, 1], T = 1 and L2 norm errors are denoted
by E(h, τ ) = ‖Um − Q hu(tm)‖ and orders of convergence in space (OCS) and in time (OCT) calculated by the formula 

O C S = log E(2h,τ )
E(h,τ )

log 2
and O C T = log E(h,2τ )

E(h,τ )

log 2
, respectively.

Example 1. Consider the following time fractional diffusion equation in Q = [0, 1] × [0, 1],
C
0 Dt

νu − ∇ · (K∇u) + ∇ · (bu) + cu = f , in Q , t > 0,

u = 0 on ∂ Q , t > 0,

u(x,0) = g(x), in Q ,

(39)

where K =
[

1 0
0 1

]
, b = (1, 1)T , c = 0 and f and g are chosen so that the exact solution is given by

u(x, y, t) = (1 + t3) sin(2πx) sin(2π y).

We first fix τ = 1/1000, T = 1 and take the mesh size h = 1
2n , n = 1, 2, 3, 4, 5, 6. L2 errors E(h, τ ) and orders of conver-

gence OCS are shown in Table 1. We also plot the L2 norm errors for various values of ν in Fig. 1 and Fig. 2
We next fix h = 1/1000 and change the time step size τ = 1

2n , n = 1, 2, 3, 4, 5, 6. The errors E(h, τ ) and orders of 
convergence OCT for ν = 0.5, 0.75, 0.90 are shown in Table 2.
Ş. Toprakseven Applied Numerical Mathematics 168 (2021) 1–12
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Table 1
L2 errors and OCS of the weak Galerkin finite element for Example 1 at T = 1
for a fixed τ = 1

1000 .

h ν = 0.5 ν = 0.75 ν = 0.90

E(h) OCS E(h) OCS E(h) OCS

1/2 4.65e-02 - 2.01e-02 - 7.45e-03 -
1/4 2.30e-02 1.0155 1.01e-02 1.0071 3.67e-03 1.0214
1/8 1.13e-02 1.0253 4.96e-03 1.0259 1.81e-03 1.0197
1/16 5.62e-03 1.0076 2.43e-03 1.0293 8.92e-04 1.0208
1/32 2.77e-03 1.0206 1.19e-03 1.0299 4.39e-04 1.0228
1/64 1.36e-03 1.0262 5.84e-04 1.0269 2.16e-04 1.0231

Fig. 1. Plots for L2 error E(h, τ ) for the different values of ν with the fixed time mesh for Example 1. (For interpretation of the colours in the figure(s), the 
reader is referred to the web version of this article.)

Table 2
L2 errors and OCT of the weak Galerkin finite element for Example 1 at T = 1
for fixed h = 1

1000 .

τ ν = 0.5 ν = 0.75 ν = 0.90

E(τ ) OCT E(τ ) OCT E(τ ) OCT

1/2 3.18e-02 - 8.08e-03 - 3.52e-03 -
1/4 1.12e-02 1.5055 3.25e-03 1.3139 1.65e-03 1.0931
1/8 3.95e-03 1.5035 1.31e-03 1.3108 7.71e-04 1.0976
1/16 1.38e-03 1.5171 5.29e-04 1.3082 3.60e-04 1.0987
1/32 4.86e-04 1.5056 2.15e-04 1.2989 1.68e-04 1.0995
1/64 1.71e-04 1.5069 8.72e-05 1.3019 7.82e-05 1.1032

Table 3
L2 errors and OCS of the weak Galerkin finite element for Example 2 at T = 1
for fixed τ = 2

10000 .

h ν = 0.5 ν = 0.75 ν = 0.90

E(h) OCS E(h) OCS E(h) OCS

1/4 6.21e-01 - 3.12e-01 - 1.08e-01 -
1/8 2.98e-01 1.0592 1.55e-01 1.0092 5.38e-02 1.0053
1/16 1.46e-01 1.0293 7.71e-02 1.0074 2.67e-02 1.0107
1/32 7.28e-02 1.0039 3.84e-02 1.0056 1.31e-02 1.0272
10
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Fig. 2. Plots for L2 error of E(h, τ ) for the different values of ν with the fixed space mesh for Example 1.

Fig. 3. Plots for L2 error E(h, τ ) for the different values of ν with the fixed time mesh for Example 2.

Example 2. Consider the following problem [13] in Q = [0, 1] × [0, 1],
C
0 Dt

νu − ∇ · (K∇u) + ∇ · (bu) + cu = f , in Q , t > 0,

u = 0 on ∂ Q , t > 0,

u(x,0) = 0, in Q ,

(40)

where K =
[

x2 + y2 + 1 xy
xy x2 + y2 + 1

]
, b = (1, 1)T , c = 0 and f is chosen so that the exact solution is given by

u(x, y, t) = sin(2πt) sin(2πx) sin(2π y).
11
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We take τ = 2/10000, T = 1 and the mesh size h = 1
2n , n = 2, 3, 4, 5. L2 errors and orders of convergence (OC) are 

shown in Table 3. We also plot the L2 norm errors for various values of ν in Fig. 3.

6. Conclusion

In this manuscript, we consider the weak Galerkin finite element method for solving the time fractional reaction-
diffusion-convection equations with variable coefficients. The semi-discrete weak Galerkin scheme in time and the fully 
discrete weak Galerkin finite element method using the standard L1- approximation in time is developed. Stability and 
error analysis is established. Various numerical examples are presented to show the efficacy of the proposed method. We 
show numerically that the results are consistent with the theoretical analysis.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .apnum .2021.05 .021.
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