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Abstract: This paper introduces a new family of distributions based on the additive model structure.
Three submodels of the proposed family are studied in detail. Two simulation studies were performed
to discuss the maximum likelihood estimators of the model parameters. The log location-scale
regression model based on a new generalization of the Weibull distribution is introduced. Three
datasets were used to show the importance of the proposed family. Based on the empirical results,
we concluded that the proposed family is quite competitive compared to other models.

Keywords: generalized distribution family; regression; serial systems; additive family; odd log-
logistic family; odd Weibull family

1. Introduction

The main aim of generating new probability distributions is to increase the modeling
ability of the baseline distribution. With this aim, many distribution generators have been
introduced in the literature. Some well-known distribution generators are the Marshall–
Olkin-G family [1], the beta-G family [2], the gamma-G family [3], the Kumaraswamy-G
(Kw-G) family [4], the generalized beta-generated family [5], the T-X family [6], and the
two-sided generalized family [7], among others. In addition to these families, many odd
families of the distribution can be cited such as the odd log-logistic-G (OLL-G) family [8],
the odd Weibull-G (OW-G) family [9], the odd Burr G family [10], the generalized odd
log-logistic-G (GOLL-G) family [11], another generalized odd log-logistic-G (GOLL2-G)
family [12], the odd log-logistic Lindley-G (OLLLi-G) family [13], the odd Chen-G (OCh-G)
family [14], the odd flexible Weibull-H (OFW-H) family [15], and the new Kumaraswamy
generalized (NKw-G) family [16]. These families bring more flexibility to the baseline
model for data modeling.

To motivate the family in this paper, we considered a serial system with two indepen-
dent components and supposed that the lifetime of the components follows the member of
the OLL-G family and the member of the OW-G family with survival functions (sfs):

SOLL−G(x; α, θ) =
Ḡ(x; θ)α

G(x; θ)α + Ḡ(x; θ)α (1)

and:

SOW−G(x; β, θ) = exp

{
−
(

G(x; θ)

Ḡ(x; θ)

)β
}

, (2)

respectively, where x ∈ <, α, β > 0 are shape parameters, which control the tail, skewness,
and kurtosis of the model, G(x; θ) is the baseline cumulative distribution function (cdf), θ
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is the parameter vector of the baseline distribution, and Ḡ(x; θ) = 1− G(x; θ) is the sf of
the baseline distribution. Hence, the sf of the system is given by:

S(x; α, β, θ) =
Ḡ(x; θ)α

G(x; θ)α + Ḡ(x; θ)α exp

{
−
(

G(x; θ)

Ḡ(x; θ)

)β
}

. (3)

With this definition in (3), we propose a new wider flexible family based on the OLL-G
and the OW-G distributions by combining them in a serial system. The corresponding cdf
and probability density function (pdf) of (3) are given by:

F(x; α, β, θ) = 1− Ḡ(x; θ)α

G(x; θ)α + Ḡ(x; θ)α exp

{
−
(

G(x; θ)

Ḡ(x; θ)

)β
}

(4)

and:

f (x; α, β, θ) =
g(x;θ)Ḡ(x;θ)α−1

G(x;θ)α+Ḡ(x;θ)α

(
αG(x;θ)α−1

G(x;θ)α+Ḡ(x;θ)α + βG(x;θ)β−1

Ḡ(x;θ)β

)
exp

{
−
(

G(x; θ)

Ḡ(x; θ)

)β
}

(5)

respectively, where g(x, θ) is the baseline pdf.
The hazard rate function (hrf) of this family is given by:

τ(x; α, β, θ) = h(x; θ)

[
αG(x;θ)α−1

G(x;θ)α+Ḡ(x;θ)α + βG(x;θ)β−1

Ḡ(x;θ)β

]
= hOLL−G(x; α, θ) + hOW−G(x; β, θ), (6)

where h(x; θ) =
g(x;θ)
Ḡ(x;θ) is the hrf of the baseline distribution, hOLL−G(x; α, θ) and hOW−G(x; β, θ)

are the hrfs of the OLL-G and OW-G families, respectively. It can be seen that the cdf, pdf,
and hrf of this family are the structure of the additive model with the OLL-G and OW-G
families. The additive distribution models include the various pdf and hrf shapes for data
modeling and ensure better fitting to the dataset than the ordinary distribution model.
They are especially useful for lifetime data modeling since the empirical approaches to real
data are often nonmonotone hrf. In general, there are many additive models based on the
Weibull distribution in the literature such as the additive Weibull, by Xie and Lai [17], the ad-
ditive Burr XII, by Wang [18], the modified Weibull, by Sarhan and Zaidin [19], the extended
additive Weibull, by Almalki and Yuan [20], the log-logistic Weibull, by Oluyede et al. [21],
and the additive modified Weibull distributions, by He et al. [22]. Therefore, we call this
new family the additive odd log-logistic odd Weibull-G (AOLLOW-G) family and denote
it by AOLLOW-G(α, β, θ). We want to point out that the structure of the AOLLOW-G
family can be proposed as a new method to obtain a flexible distribution family. As a
real interpretation of the suggested model, consider a device with a two independent
series subdevice with Z1 ∼ OLL-G and Z2 ∼ OW-G, then the lifetime of this device is
X = min{Z1, Z2} ∼ AOLLOW-G, which is the suggested family. We were also motivated
to introduce this family because it exhibits increasing, decreasing, constant, unimodal,
unimodal, then bathtub, as well as bathtub hazard rates and its other shapes in modeling
lifetime data.

The remaining parts of the study can be summarized as follows. Section 2 contains the
special members of the proposed family. In Section 3, we present the linear combinations
of the proposed family in terms of the exponentiated-G family. Section 4 contains the
statistical properties. The parameter estimation issue of the proposed family is discussed
in Section 5. The log location-scale regression model based on a new generalization of
the Weibull distribution is introduced in Section 6. Two simulation studies related to the
finite sample behavior of the estimators of the proposed model are given in Section 7. The
empirical findings of the presented study are given in Section 8. The study is concluded in
Section 9.
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2. Special Members of the Family

The AOLLOW-G family generates alternative extended distributions, and it contains
some new subfamilies. For example, the additive odd-log logistic odd exponential-G
family is obtained for β = 1, and the additive odd-log logistic odd Rayleigh-G family is
obtained for β = 2. It is reduced to the additive G odd Weibull-G family for α = 1, and
it is the additive G odd exponential-G family for α = β = 1. It also is the additive G odd
Rayleigh-G family for α = 1 and β = 2. Now, we present the three important submodels of
this new family.

2.1. The AOLLOW-Normal Distribution

Let G(x; µ, σ) = Φ
(

x−µ
σ

)
be the cdf of the normal distribution. The cdf of the

AOLLOW-normal (AOLLOW-N) distribution is given by:

F(x; α, β, µ, σ) = 1−

[
1−Φ

(
x−µ

σ

)]α

Φ
(

x−µ
σ

)α

+

[
1−Φ

(
x−µ

σ

)]α exp

−
 1

Φ
(

x−µ
σ

) − 1

−β
.

Some possible plots of the AOLLOW-N density for selected parameter values are
displayed in Figure 1. This figure shows that the pdf shapes of the AOLLOW-N can be
trimodal, bimodal, unimodal, and skew-shaped. Therefore, we can say that new extended
normal distribution has great flexible density shapes for data modeling.
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Figure 1. The pdf plots of the AOLLOW-N distribution.

2.2. The AOLLOW-Weibull Distribution

Let G(x; λ, γ) = 1− exp
(
−(λx)γ) be the cdf of the Weibull distribution with shape

parameter γ > 0 and scale parameter λ > 0. The cdf of the AOLLOW-Weibull (AOLLOW-
W) distribution is given by:

F(x; α, β, λ, γ) = 1− e−α(λx)γ

e−α(λx)γ+(1−e−(λx)γ)
α exp

{
−
(

e(λx)γ

− 1
)β
}

.

Figure 2 displays the pdf and hrf shapes of the AOLLOW-W. As seen from the figure,
it is obvious that the AOLLOW-W distribution has left-right skewed and bimodal shapes.
Its hrf structure is also very flexible and has the following shapes: increasing, decreasing,
bathtub, decreasing-increasing-decreasing.
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Figure 2. The pdf and hrf plots of the AOLLOW-W distribution.

The saturation characteristic of the AOLLOW-W distribution can be studied in the
sense of the Hausdorff distance, which is important for reliability theory, financial mathe-
matics, and debugging theory. This important property of the AOLLOW-W distribution
is planned as a future work of the present study. Detailed information can be found in
Kyurkchiev [23] and Kyurkchiev and Markov [24].

2.3. The AOLLOW-Gamma Distribution

Let G(x; δ, λ) = γ∗(λ, δx)Γ−1(λ) be the cdf of the gamma distribution. The Γ(·) is a
complete gamma function, and γ∗(λ, δx) is defined as:

γ∗(λ, δx) =
∫ δx

0
tλ−1e−tdt

which is called as incomplete gamma function. The cdf of the AOLLOW-gamma (AOLLOW-
Ga) distribution is:

F(x; α, β, λ, δ) = 1− [1−γ∗(λ,δx)Γ−1(λ)]
α

[γ∗(λ,δx)Γ−1(λ)]
α
+[1−γ∗(λ,δx)Γ−1(λ)]

α exp
{
−
(

γ∗(λ,δx)Γ−1(λ)
1−γ∗(λ,δx)Γ−1(λ)

)β
}

.

Figure 3 displays the pdf and hrf shapes of the AOLLOW-Ga distribution. We have the
following results from these figures: (i) the pdf shapes of the AOLLOW-Ga distribution are
left-right skewed and bimodal; (ii) the hrf shapes of the AOLLOW-Ga distribution are in-
creasing, decreasing, bathtub, decreasing-increasing-decreasing-increasing, and increasing-
decreasing-increasing. Since the new extended Weibull and gamma distributions have
a very flexible density and hrf shapes, we can say that they can be useful especially in
lifetime data modeling.
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Figure 3. The pdf and hrf plots of the AOLLOW-Ga distribution.

3. Useful Expansions

Let us define the pdf and cdf of the exponentiated-G (exp-G) family for the parent
distribution G(x). The cdf and pdf of the exp-G family are given by:

Hc(x) = G(x)c, (7)

hc(x) = c g(x) G(x)c−1, (8)

The cdf of the AOLLOW-G family can be expressed as follows by using the generalized
binomial expansion:

F(x) = 1− Ḡ(x)α

G(x)α + Ḡ(x)α
exp{−

[
G(x)
Ḡ(x)

]β

}

= 1− Ḡ(x)α

G(x)α + Ḡ(x)α

∞

∑
l=0

(−1)l

l!

[
G(x)
Ḡ(x)

]β l
(9)

= 1−
∞

∑
l,j=0

(−1)l+j(α− β l)j

l!
G(x)β l+j

G(x)α + Ḡ(x)α

The second part of (9) can be written as follows:

G(x)β l+j

G(x)α + Ḡ(x)α
=

∑∞
k=0 bk G(x)k

∑∞
k=0 ak G(x)k =

∞

∑
k=0

ck G(x)k (10)
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where:

ak =
∞

∑
i=k

(−1)i+k
(

β l + j
i

)(
i
k

)
bk = (−1)k

(
α

k

)
+

∞

∑
i=k

(−1)i+k
(

α

i

)(
i
k

)
(11)

c0 =
a0

b0

For k ≥ 1,

ck =
1
b0

[
ak −

1
b0

k

∑
r=1

br ck−r

]
(12)

Then, we can write:

F(x) = 1−
∞

∑
k=0

wk G(x)k =
∞

∑
k=0

dk G(x)k =
∞

∑
k=0

dk Hk(x) (13)

where wk = ∑∞
l,j=0

(−1)l+j(α−β l)j
l! ck(α, β, l, j), d0 = 1− w0, and for k ≥ 1, dk = −wk.

Hk(x) = G(x)k denotes the exp-G with power parameter k.
We can write:

f (x) =
∞

∑
k=0

dk+1 hk+1(x) (14)

and hk+1(x) = (k + 1) g(x) G(x)k denote the pdf of the exp-G with power parameter
k + 1. The main result of this section is (14), which shows that the proposed family can be
expressed as a linear combination of the exp-G densities. This property of the proposed
family helps us obtain its statistical properties based on the exp-G densities.

4. Statistical Properties

This section deals with the statistical properties of the proposed family.

4.1. Quantile Function

Generating random variables from continuous probability distributions is generally
performed by the quantile function (qf). The uth quantile, denoted by xu = Q(u), of the
AOLLOW-G distribution is obtained by the solution of the equation:

log
[
(1− u)

([
G(xu ;θ)
Ḡ(xu ;θ)

]α
+ 1
)]
−
[

G(xu ;θ)
Ḡ(xu ;θ)

]β
= 0, (15)

where u ∈ (0, 1). We can also write for the qf of any AOLLOW-G distribution:

xu = min{QG(
u1/α

u1/α + (1− u)1/α
), QG(

(− log(1− u))1/β

1 + (− log(1− u))1/β
)}, (16)

where QG(.) = G−1(.) denotes the qf of the G baseline distribution and u ∈ (0, 1).
Using (15) or (16), the random variables can be generated from any member of the
proposed family.
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4.2. Moments

Let Yk follow an exp-G distribution with the parameter k + 1. Using (14), the nth
moment of the AOLLOW-G family is:

E(Xn) =
∞

∑
k=0

dk+1 E(Yn
k ). (17)

Regarding the moments of exp-G distributions, one can visit the work of Nadarajah
and Kotz [25].

Equation (17) can be expressed based on the G qf as follows:

E(Xn) =
∞

∑
k=0

(k + 1) dk+1 τ(n, k), (18)

where τ(n, k) =
∫ ∞
−∞ xn G(x)k g(x)dx =

∫ 1
0 QG(u)n ukdu. Cordeiro and Nadarajah [26]

provided an explicit expression for τ(n, k) for some beta generalized distributions.
For integer values of n, let µ

′
n = E(Xn) and µ = µ

′
1 = E(X), then one can also find the

nth central moment of the AOLLOW-G distribution as:

µn = E(X− µ)n =
n

∑
i=0

(
n
i

)
µ
′
i(−µ)n−i. (19)

Using (19), we calculate the skewness and kurtosis of the AOLLOW-G as follows:

Skewness(X) =
µ′3 − 3µ′2µ′1 + 2µ′31(

µ′2 − µ′21

) 3
2

, (20)

and:

Kurtosis(X) =
µ′4 − 4µ

′
1µ′3 + 6µ′21µ′3 − 3µ′41

µ′2 − µ′21
, (21)

respectively. Figure 4 displays the skewness and kurtosis plots of the AOLLOW-N distri-
bution. These figures help us to understand how additional shape parameters affect the
shape of the distribution.

4.3. Generating Function

Let MX(t) = E(et X) where X ∼ AOLLOW-G, then the first one simply comes from
(14) as:

MX(t) =
∞

∑
k=0

dk+1 Mk(t), (22)

where Mk(t) is the moment generating function (mgf) of Yk. So, exp-G generating function
is used to obtain MX(t). From (14), we have:

M(t) =
∞

∑
i=0

(k + 1) dk+1 ρ(t, k), (23)

where ρ(t, k) =
∫ ∞
−∞ et x G(x)k g(x)dx =

∫ 1
0 exp[t QG(u)]ukdu.

Equation (23) can be used to obtain the mgfs of the different distributions obtained by
means of the AOLLOW-G family.
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Figure 4. The skewness and kurtosis plots for the selected AOLLOW-N distributions.

5. Inference

The unknown parameters of the AOLLOW-G family are estimated by means of the
maximum likelihood estimation (MLE) method. Let Ψ =(α, β, θᵀ)ᵀ be an unknown param-
eter vector where θ is a q× 1 parameter vector for the baseline distribution. Under these
settings, the log-likelihood function of the AOLLOW-G family is:

` =
n

∑
i=1

log g(xi; θ) + (α− 1)
n

∑
i=1

log Ḡ(xi; θ)−
n

∑
i=1

log
[
G(xi; θ)α + Ḡ(xi; θ)α]

−
n

∑
i=1

log
[

αG(xi ;θ)
α−1

G(xi ;θ)
α+Ḡ(xi ;θ)

α + βG(xi ;θ)
β−1

Ḡ(xi ;θ)
β

]
−

n

∑
i=1

(
G(xi ;θ)
Ḡ(xi ;θ)

)β
. (24)

One could prefer to obtain the score vectors corresponding to the likelihood function,
given in (24). To do this, it is necessary to take partial derivatives of (24) with respect to the
parameters such as U(Ψ) = ∂`

∂Ψ = ( ∂`
∂α , ∂`

∂β , ∂`
∂ θq

)ᵀ. The simultaneous solution of these score
vectors gives the MLE of the unknown parameter vector, Ψ. Note that the score vectors can
be requested from the authors. Unfortunately, it is impossible to obtain the explicit solution
of these nonlinear equation systems. Therefore, the log-likelihood has to be maximized by
using the optimization algorithms. Here, we prefer the optim function of the R software
for this purpose. The asymptotic confidence intervals of the parameters are constructed
based on the observed information matrix.

6. Regression Modeling

In this section, a new location-scale regression model is introduced based on the
AOLLOW-W distribution. For this aim, we use the log-transformation and some convenient
parametrizations on the AOLLOW-W distribution. Let γ = 1/σ and λ = exp(−µ) and
Y = log(X). We have the following density for the random variable Y:
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f (y) =
1
σ exp[( y−µ

σ )−exp( y−µ
σ )](exp[− exp( y−µ

σ )])
α−1

{1−exp[− exp( y−µ
σ )]}α

+(exp[− exp( y−µ
σ )])

α

×
(

α{1−exp[− exp( y−µ
σ )]}α−1

{1−exp[− exp( y−µ
σ )]}α

+(exp[− exp( y−µ
σ )])

α +
β{1−exp[− exp( y−µ

σ )]}β−1

(exp[− exp( y−µ
σ )])

β

)

× exp

{
−
(
{1−exp[− exp( y−µ

σ )]}
exp[− exp( y−µ

σ )]

)β
} , (25)

where y ∈ <. The parameters µ ∈ < and σ > 0 are the location and scale parameters,
respectively. The parameters α > 0 and β > 0 are the shape parameters. The density
in (25) is denoted as Y ∼ LAOLLOW-W(α, β, σ, µ). The pdf shapes of the LAOLLOW-W
distribution are displayed in Figure 5, which shows that the LAOLLOW-W can be used to
model different types of the datasets such as left-skewed, symmetric, and bimodal shapes.

The sf is:

S(y) =

(
exp

[
− exp

(
y−µ

σ

)])α

{
1− exp

[
− exp

(
y−µ

σ

)]}α
+
(

exp
[
− exp

(
y−µ

σ

)])α exp

−

{

1− exp
[
− exp

(
y−µ

σ

)]}
(

exp
[
− exp

(
y−µ

σ

)])
β
. (26)

Besides, using the standardized random variable, Z = (Y− µ)/σ, we have:

f (z) = exp[z−exp(z)](exp[− exp(z)])α−1

{1−exp[− exp(z)]}α+(exp[− exp(z)])α

×
(

α{1−exp[− exp(z)]}α−1

{1−exp[− exp(z)]}α+(exp[− exp(z)])α +
β{1−exp[− exp(z)]}β−1

(exp[− exp(z)])β

)
× exp

{
−
(
{1−exp[− exp(z)]}

exp[− exp(z)]

)β
} . (27)

Now, using the LAOLLOW-W density, we introduce a location-scale regression model
by linking the covariates to the location of the random variable Y by means of the identity
link function. Consider the regression structure:

yi = x>i β + σzi, i = 1, . . . , n, (28)

where x>i = (xi1, . . . , xik) is the independent variable vector and yi is the dependent
variable, following the density in (25). The regression parameters are represented by the
vector, βββ = (β1, . . . , βk)

>. The dependent variable is defined as yi = min{log(ti), log(ci)}
where ti and ci are the observed lifetime and censoring times, respectively. Let F and C
be the sets representing the lifetime and censoring times. Based on these specifications,
the log-likelihood function of the LAOLLOW-W regression model is:

`(τ) = −r log(σ) + ∑
i∈F

(zi − ui)− (α− 1) ∑
i∈F

ui − ∑
i∈F

log
[
{1− exp[−ui]}α + (exp[−ui])

α]
+ ∑

i∈F
log
(

α{1−exp[−ui ]}α−1

{1−exp[−ui ]}α+(exp[−ui ])
α +

β{1−exp[−ui ]}β−1

(exp[−ui ])
β

)
− ∑

i∈F

(
{1−exp[−ui ]}

exp[−ui ]

)β

−α ∑
i∈C

ui − ∑
i∈C

log
[
{1− exp[−ui]}α + (exp[−ui])

α]− ∑
i∈C

(
{1−exp[−ui ]}
(exp[−ui ])

)β

, (29)

where τ = (α, β, σ, β), ui = exp(zi) and zi = (yi − x>i β)/σ. Note that r is the number of
uncensored observations. The MLE of the unknown parameter vector, τ̂ττ, is obtained based
on the maximization of the given log-likelihood function in (29). The optim function of the
R software is used to minimize the negative log-likelihood function. The standard errors of
the estimated parameters are obtained by means of observed information, which is easily
obtained by the Hess function of the R software.
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Figure 5. The pdf plots of the LAOLLOW-W density.

Residual Analysis

Residual analysis is required to control the accuracy of the proposed regression model
for the fitted dataset. For this goal, we consider two residuals. These are the martingale and
modified deviance residuals. The martingale residual (see Fleming and Harrington [27]) of
the LAOLLOW-W model is given by:

rMi =


1 + log

(
(exp[−ui ])

α

{1−exp[−ui ]}α+(exp[−ui ])
α exp

{
−
(
{1−exp[−ui ]}
(exp[−ui ])

)β
})

if i ∈ F,

log
(

(exp[−ui ])
α

{1−exp[−ui ]}α+(exp[−ui ])
α exp

{
−
(
{1−exp[−ui ]}
(exp[−ui ])

)β
})

if i ∈ C,
(30)

Since the martingale residuals are not distributed symmetrically, its interpretation
has some difficulties. In this case, the modified deviance residuals, proposed by Th-
erneau et al. [28], are generally used, which are defined as:

rDi =

{
sign

(
rMi

){
−2
[
rMi + log

(
1− rMi

)]}1/2, if i ∈ F
sign

(
rMi

){
−2rMi

}1/2, if i ∈ C,
(31)

where r̂Mi is the martingale residual.

7. Simulation Studies
7.1. Simulation Study 1

The AOLLOW-N distribution was used for the first simulation. The simulation was re-
peated N = 1000 times. The sample size was increased by 10 units such as n = 20, 30, . . . , 1000.
The parameter values were α = 5, β = 2, µ = −1, and σ = 2. The results were evaluated
based on the following metrics: estimated mean, bias, standard deviation (sd), and mean
squared error (MSE). Our expectation was to see that when n is sufficiently large, the
estimated biases and MSEs should be near the zero. The simulation results, displayed in
Figure 6, verified our expectation. Therefore, the MLE method is the preferable method to
obtain the unknown parameters of the AOLLOW-N distribution.

7.2. Simulation Study 2

The AOLLOW-W distribution was used for the second simulation. As in the first
simulation, the simulation replication number was N = 1000. The sample sizes used were:
n = 20, 60, 100. The results are discussed based on the estimated mean and sd of the MLEs.
Table 1 contains the simulation results. The results in this table show that the estimated
mean and sd decrease withthe sample size n.
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Figure 6. Simulation results of the AOLLOW-N distribution.

Table 1. The simulation results of the AOLLOW-W distribution based on empirical mean and standard deviation
(in parentheses).

Parameters n = 20 n = 60 n = 100

α, β, λ, γ α̂ β̂ λ̂ γ̂ α̂ β̂ λ̂ γ̂ α̂ β̂ λ̂ γ̂

0.5, 2, 0.5, 2 0.5327 2.0754 0.5156 2.1858 0.5076 2.0187 0.5060 2.0686 0.5067 2.0205 0.5022 2.0351
(0.2003) (0.4328) (0.0359) (0.3527) (0.0982) (0.2422) (0.0174) (0.2160) (0.0717) (0.1615) (0.0125) (0.1509)

1, 0.5, 0.5, 2 1.0407 0.5491 0.5232 2.5367 1.0167 0.5465 0.5040 2.1541 1.0018 0.5399 0.5016 2.1123
(0.6327) (0.2974) (0.0848) (0.7923) (0.4233) (0.1849) (0.0428) (0.5598) (0.3554) (0.1624) (0.0330) (0.4873)

5, 5, 0.5, 0.5 4.9099 5.0724 0.5266 0.5407 4.8526 5.0990 0.5177 0.5245 4.9784 5.0163 0.5074 0.5098
(0.3564) (0.2439) (0.0797) (0.1098) (0.5727) (0.4224) (0.0490) (0.0624) (0.1569) (0.1126) (0.0343) (0.0419)

2, 2, 2, 2 1.8851 2.3515 2.0364 2.2521 1.9740 2.1548 2.0125 2.0790 1.9996 2.0880 2.0051 2.0457
(0.7248) (0.5187) (0.1201) (0.5273) (0.5768) (0.3070) (0.0661) (0.2762) (0.5067) (0.0661) (0.0547) (0.2370)

1, 2, 3, 4 1.1058 2.1757 3.0427 4.3521 1.0355 2.0483 3.0127 4.1308 1.0216 2.0211 3.0075 4.0867
(0.4546) (0.7245) (0.0893) (0.5841) (0.2447) (0.3964) (0.0516) (0.3320) (0.2018) (0.3024) (0.0407) (0.2894)

4, 3, 2, 1 3.8858 3.0293 2.1136 1.2596 3.9176 3.0012 2.0539 1.1167 3.9575 2.9717 2.0368 1.0697
(0.7970) (0.9388) (0.2442) (0.5369) (0.6317) (0.7288) (0.1538) (0.2735) (0.4844) (0.5696) (0.1172) (0.1893)

8. Data Analysis

Three datasets were analyzed to compare the special cases of the AOLLOW-G family
with existing models such as the Kw-G, GOLL-G, GOLL2-G, OLL-G, OW-G, and additive
Weibull (AW) by Lemonte et al. [29]. The information criteria and goodness-of-fit test below
were used to select the best model for the modeled data:
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• Akaike information criterion (AIC);
• Kolmogorov–Smirnov (KS);
• Cramer–von Mises (W∗);
• Anderson–Darling (A∗).

Furthermore, the estimated log-likelihood values ˆ̀ were used to select the best model.
See Chen and Balakrishnan [30] for detailed information on W∗ and A∗. The smallest
values of these metrics show the best model for the data. Additionally, we used the total
time on test (TTT) plot (Aarset [31]) to determine the shape of the empirical hrf. The TTT
plots of the two datasets are given in Figure 7.
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Figure 7. TTT plots for stress data (a) and guinea pig data (b).

8.1. Stress Data

The data regarded the stress-rupture life of Kevlar 49/epoxy strands. Andrews and
Herzberg [32], Cooray and Ananda [33], and Paraniaba et al. [34] analyzed the same dataset.
Figure 7a shows that the empirical hrf of the data has a convex-concave-convex shape.
Table 2 contains the estimated parameters, as well as goodness-of-fit statistics. From these
results, we concluded that the AOLLOW-W distribution is the best choice among the others
since it had the lowest values of the model selection criteria.

Table 2. The results of the first data set (standard errors of the estimates are in parentheses).

Model α̂ β̂ λ̂ γ̂ − ˆ̀ AIC KS A∗ W∗

AOLLOW-W 43.5199 10.9591 0.0002 0.04619 99.9641 207.9282 0.0505 0.3790 0.0460
(10.6311) (1.6396) (0.00001) (0.0017)

AW 0.6703 0.7893 0.3139 1.2451 102.8146 213.6292 0.0826 0.9372 0.1601
(0.7347) (0.2712) (0.7209) (0.5576)

GOLL2-W 0.8891 0.6399 1.6166 1.0111 102.8434 213.6869 0.0902 1.0140 0.1814
(0.1949) (0.1222) (0.2645) (0.1777)

GOLL-W 1.1712 0.6062 0.6131 1.1123 102.7667 213.5335 0.0798 0.9348 0.1561
(0.9348) (0.8847) (0.9732) (0.4377)

Kw-W 0.7197 0.2429 3.5048 1.0362 102.6217 213.2433 0.0752 0.8432 0.1376
(0.0053) (0.0245) (0.0041) (0.0106)

OLL-W 0.8892 1.0396 1.0109 102.8435 211.6869 0.0903 1.0145 0.1816
(0.1944) (0.1286) (0.1771)

OW-W 6.2492 0.0330 0.1077 102.8714 211.7428 0.0847 0.9778 0.1686
(13.8005) (0.2478) (0.2391)

W 1.0101 0.9260 102.9768 209.9536 0.0906 1.1220 0.1963
(0.1141) (0.0726)
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Figure 8 gives information about the suitability of the fitted distributions for the dataset
graphically. From these figures, one can conclude that the AOLLOW-W distribution is a
good choice for the data used. Additionally, only the estimated hrf of the AOLLOW-W
overlaps with the result of the TTT plot.
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Figure 8. The fitted plots for the first dataset.

8.2. Guinea Pig Data

The second dataset regarded the survival times (in days) of guinea pigs (Bjerkedal [35]).
Gupta et al. [36], Korkmaz and Genç [37], and Korkmaz [38] analyzed the same dataset
with various probability distributions. Figure 7b shows that the empirical hrf of the data
is concave-convex-concave.

The estimated parameters and goodness-of-fit test results are given in Table 3. As in
the previous application, the proposed model, AOLLOW-Ga, had the lowest values of
the model selection criteria. Moreover, to strengthen the suitability of the AOLLOW-Ga
distribution for the data, the fitted functions of the AOLLOW-Ga and other competitive
distributions are plotted in Figure 9. It is obvious that the AOLLOW-Ga distribution is the
best among the others and provided a nearly perfect fit to the data.

Table 3. The results of the second data set (standard errors of the estimates are in parentheses).

Model α̂ β̂ δ̂ λ̂ − ˆ̀ AIC KS A∗ W∗

AOLLOW-Ga 0.0598 0.0371 0.4412 74.2805 386.5875 781.1751 0.0883 0.5483 0.1003
(0.0163) (0.0057) (2.3× 10−6) (1.1× 10−9)

GOLL2-Ga 4.5123 3.4472 7.7× 10−5 3.5404 391.0022 790.0043 0.0897 0.9138 0.1411
(1.3647) (2.5399) (1× 10−6) (0.1279)

GOLL-Ga 12.2028 0.0621 1.7× 10−5 1.6275 390.5474 789.0948 0.0906 0.7493 0.1254
(1.1728) (0.0403) (0.0001) (0.9773)

Kw-Ga 287.2096 0.3796 0.0306 0.0206 390.3771 788.7543 0.0986 0.9409 0.1761
(0.4384) (0.1826) (0.0140) (0.0099)

OLL-Ga 10.3182 2.5× 10−5 0.1202 390.6752 787.3503 0.0888 0.8285 0.1285
(0.7899) (0.0001) (0.1771)

OW-Ga 0.0465 0.3925 61.1120 394.4674 794.9348 0.2276 5.2988 1.1630
(0.0042) (0.0001) (0.1688)

Ga 0.0208 2.0810 394.2476 792.4952 0.1385 1.8960 0.3555
(0.0037) (0.3232)
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Figure 9. The fitted plots for the second dataset.

8.3. Stanford Heart Transplant Dataset

In the third application, the practicability of the LAOLLOW-W regression model was
discussed based on the real data. Brito et al. [39] used the Stanford heart transplant dataset
for the log-Topp–Leone odd log-logistic-Weibull (Log-TLOLL-W) regression model. We
used the same dataset to compare the proposed model with the log-TLOLL-W model.
The total individuals were n = 103, and the percentage of the censored observations was
27%. The dependent variable survival time yi was modeled with the following covariates:

X x1: year of acceptance to the program;
X x2: age of the patient (years);
X x3: previous surgery (1 = yes, 0 = no);
X x4: transplant (1 = yes, 0 = no).

We consider the regression structure:

yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + σzi, (32)

The above regression structure is fit by the log-Weibull, log-TLOLL-W, and log-AOLLOW-
W models. The results of the fitted regression models are summarized in Table 4, giving
the estimated parameters, standard errors, p-values, and the the model selection AIC and
BIC. From these results, we concluded that the LAOLLOW-W regression model is the best
choice among the others for the dataset used. The regression parameters, β1 and β2 were
found to be statistically significant at the 1% level. Therefore, the survival time increased
when the year of acceptance increased. Besides, when the age of the patient increased, the
survival time decreased.

Model Accuracy

The accuracy of the fitted regression model was checked using the modified deviance
residuals. Figure 10 displays the index and quantile–quantile (qq) plots. The expectation
was that when the fitted model is statistically valid, the modified deviance residuals should
be distributed as N(0,1). From the qq plot, it is easy to conclude that the LAOLLOW-W
regression model is statistically valid. The index plot of the modified deviance residuals
shows that there were no observations evaluated as possible outliers.
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Table 4. The results of the fitted regression models.

Models

Log-Weibull Log-TLOLL-W LAOLLOW-W

Parameters Estimate S.E. p-Value Estimate S.E. p-Value Estimate S.E. p-Value

α - - - 2.340 3.546 - 5.244 4.840 -
β - - - 24.029 3.015 - 4.986 5.745 -
σ 1.478 0.133 - 9.680 12.526 - 8.270 8.640 -
β0 1.639 6.835 0.811 −0.645 8.459 0.939 6.689 3.199 0.036
β1 0.104 0.096 0.279 0.074 0.097 0.448 0.236 0.086 0.006
β2 −0.092 0.02 <0.001 −0.053 0.02 0.009 −0.079 0.018 <0.001
β3 1.126 0.658 0.087 1.676 0.597 0.005 −0.082 0.470 0.861
β4 2.544 0.378 <0.001 2.394 0.384 <0.001 0.263 0.355 0.458

−` 171.2405 164.684 161.911
AIC 354.481 345.368 339.822
BIC 370.2894 366.4458 360.900
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Figure 10. The index (a) and qq (b) plots of the modified deviance residuals.

9. Concluding Remark

A new family of distributions was introduced with two extra shape parameters.
The mathematical properties were studied in detail. Simulation studies were implemented.
The location-scale regression model was also introduced. Three datasets were analyzed.
The empirical results showed that the AOLLOW-G family gives better results than other
famous G-families of distributions. As a future work of the present paper, we plan to
develop a bivariate version of the AOLLOW-G family. Furthermore, this family can be used
to generate new heavy-tailed distributions by using the Pareto as a baseline distribution. A
new generalization of the Pareto distribution using the proposed family can be applied to
financial datasets to forecast financial risk. We hope that this new family captures many
application areas.
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Abbreviations
The following abbreviations are used in this manuscript:

Kw-G Kumaraswamy-G
OW-G odd Weibull-G
OLL-G odd log-logistic-G
GOLL-G generalized odd log-logistic-G
GOLL2-G another generalized odd log-logistic-G
sf survival function
sd standard deviation
MSE mean squared error
cdf cumulative distribution function
pdf probability density function
hrf hazard rate function
mgf moment generating function
AOLLOW-G additive odd-log logistic odd Weibull-G
qf quantile function
qq quantile-quantile
TTT total time on test
AIC Akaike information criterion
KS Kolmogorov–Smirnov
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