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Abstract  Forests provide a large array of ecosystem 
services (ESs) such as wood supply, extreme natural 
event prevention, and ecotourism opportunities. The 
quantitative characterization of ESs is a crucial but 
costly task for environmental managers. The aim of 
this study was to develop easily applicable models 
and indicators for assessing erosion control ES in a 
semi-arid landscape. In order to accomplish this, 107 
randomly selected plots were visited for field meas-
urements and topsoil sampling. Several parametric 
tests were then used to analyze the field data. The 
findings revealed that (i) normalized difference veg-
etation index (NDVI), (ii) cover management (C) 
factor of the Revised Universal Soil Loss Equation 
(RUSLE), (iii) soil organic matter content, (iv) can-
opy cover ratio, and (v) land use/land cover (LULC) 
types could be used as useful performance indicators 
of erosion control ES. Two regression models were 
developed based on these indicators and compared 
to RUSLE results for the study area. Using the first 
model, we were able to estimate the soil protection 
performance of different LULC types by NDVI at the 
pixel level (R2

adj = 0.90, p < 0.05). The second model 
estimated annual potential soil loss using NDVI and 

ground slope values (R2
adj = 0.57, p < 0.05). Based 

on the ES indicators framework, a practical approach 
was proposed in this study for rapid assessment of 
the soil erosion problem without running RUSLE. 
Thus, environmental managers are expected to make 
well-informed landscape planning decisions and 
improve their ES provision application capabilities at 
a reduced cost.

Keywords  Forest management planning · 
Landscape ecology · Revised Universal Soil Loss 
Equation (RUSLE) · Biophysical indicators · Soil 
protection performance index (SPPI)

Introduction

Every year, 642 million tons of sediment are washed 
into the seas in Turkey as a result of water-borne soil 
erosion (Erpul et al., 2018). With a better understand-
ing of the role of forest cover in protecting soil against 
erosion, research in this field has increased over the 
last century on a global scale. Indeed, when com-
pared to bareland conditions in the same climatic gra-
dient, forest cover can reduce surface runoff by 15–20 
times and soil loss by up to 350 times (GDF, 2014). 
Therefore, erosion control is regarded as an essential 
ecosystem service (ES), particularly in erosion-prone 
countries (Akgöz et al., 2022; Aytop & Şenol, 2022).

ESs can be briefly defined as “the benefits that 
humans derive from nature” (TEEB, 2010). Based 
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on the latest version of the Common International 
Classification of Ecosystem Services (CICES), ESs 
are grouped into three main sections: (i) provision-
ing, (ii) regulating and maintenance, and (iii) cultural 
(Burkhard et al., 2012; CICES, 2018; Tokgöz & Say, 
2021). In this classification scheme, the erosion con-
trol ES is listed under the regulating and maintenance 
section and it is defined as “regulation of baseline 
flows and extreme events.”

The quantification of ESs is crucial for operation-
alizing the ES concept within the context of manage-
ment planning (Baskent, 2020; Caglayan et al., 2021; 
Tiemann & Ring, 2022). It is often performed by 
direct measurements on the ground, indirect meas-
urements via remote sensing, and/or modeling tools 
(Burkhard & Maes, 2017; Knoke et al., 2021). What-
ever method is chosen, robust indicators are needed 
for them to be effectively used in practice.

The indicators are used to spatially assess the sup-
ply, flow, and demand of a given ES over a specific 
time frame (Tiemann & Ring, 2022; Vihervaara et al., 
2017). The volume of harvested wood, for instance, 
is a useful indicator of well-managed forests. Utiliz-
ing solid wood units such as cubic meters, cubic feet, 
or cords can aid in easily tracking, quantifying, and 
assessing the flow of wood production. For regulat-
ing and cultural forest ESs, however, the quantifica-
tion step is often challenging (Knoke et  al., 2021). 
Taking erosion control ES, for instance, it is hard to 
model how much soil loss is being prevented each 
year by specific land use/land covers (LULCs) in an 
investigated area. Although many erosion prediction 
models are used worldwide, they only provide poten-
tial soil loss and its spatial distribution throughout the 
area. Thus, additional indicators or proxies are often 
used to reveal the erosion control ES supplied by each 
LULC type (Egoh et  al., 2012; Oudenhoven et  al., 
2015; Tokgöz & Say, 2021).

The adaptation of indicators for erosion control 
ES varies by country. In Turkey, for example, if 
the slope rate in forested land is greater than 60%, 
the land is assigned to the erosion control ES (aka 
soil protection function) in forest management 
plans (GDF, 2017). Despite its limitations, such as 
the lack of other factors contributing to soil loss, 
the ground slope is used as a practical indicator 
for forest planners. In Germany, on the other hand, 
Koschke et al. (2012) used the runoff coefficient as 
a proxy indicator for quantifying the same ES in a 

landscape planning framework. The altitude, soil 
type, soil loss, bulk density, and the ratio of for-
ested lands are other indicators used to approximate 
soil-related ESs worldwide (Oudenhoven et  al., 
2015). However, when used alone, these indicators 
are incapable of grasping such complex ESs (Egoh 
et al., 2012; Vatandaşlar et al., 2020).

To overcome these limitations, Guerra et  al. 
(2014) developed a conceptual framework to dis-
tinguish the capacity of erosion control ES (supply) 
and its actual provision (flow). They first quantified 
the structural impact of soil erosion without service 
provisioning (i.e., bareland condition). Then, the 
researchers calculated the mitigated impact of ero-
sion using the Revised Universal Soil Loss Equa-
tion (RUSLE) model. Finally, a fraction of the 
structural impact was determined as the actual ES 
provision. Although scientifically sound, the frame-
work is ineffective for incorporating erosion control 
ES into forest management plans. The framework is 
challenging to realize on the ground due to a lack of 
knowledge and expertise among forest planners and 
land managers in integrating erosion models into 
management plans. Because of their intensive field-
work and limited time, they can barely implement 
erosion models like those proposed by Guerra et al. 
(2014). Thus, considerably more practical—but still 
quantitative—models or indicators are desperately 
needed in this discipline.

The present study aims to develop useful models 
and indicators for assessing the erosion control ES 
of forested lands. Individual tree parameters (tree 
age, tree height, diameter at breast height (DBH), 
annual growth ring width), stand parameters (basal 
area, stand age, stand height, stand origin, canopy 
cover ratio, regeneration status, health status, stand 
vertical layering, stand form, silvicultural sta-
tus), forest floor parameters (litter thickness, litter 
depth, ground closure of undergrowth vegetation, 
surface roughness, surface stoniness), deadwood 
parameters (number of fallen deadwood, number 
of stumps, number of standing deadwood and their 
DBHs), topographical parameters (slope, aspect), 
soil parameters (silt, clay, sand content, soil type, 
organic matter (OM)), and soil erosion parameters 
(vegetation cover, rainfall erosivity, soil erodibility, 
slope length and steepness, conservation support 
practices) were used as useful indicators to achieve 
our objectives. To estimate the surface soil loss by 
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water erosion, the RUSLE model was used. The 
sediment delivery ratio (SDR) and sediment yield 
(SY) to the river systems were also estimated.

To this end, an intensive timber survey and soil 
sampling were performed in 107 randomly selected 
plots in Olur Forest Enterprise, northeastern Tur-
key. After analyzing data sets collected from the 
field, relationships among ES indicators, soil prop-
erties, and other forest-related parameters were 
investigated. Moreover, two regression models and 
several performance indicators are proposed for 
the management planning context. The findings 
of this study are expected to be used in forest and 
land management plans to allocate different land-
scape units to the appropriate ES (Caglayan et  al., 
2021) and for forest function mapping, a common 
management tool in European forestry (Tiemann & 
Ring, 2022). They can also be utilized by erosion 
modelers and other resource managers who work 
with or are interested in ES assessments.

Materials and methods

Study area

Olur Forest Enterprise is the study area located 
between 40°14′18″ − 40°58′45″N and 41°49′55″ −  
42°19′59″E in Erzurum Province (Fig.  1). Its total 
area coverage is 80,864  ha, and only 9.2% of it is 
forested. The rest of the study area is composed of 
unproductive grassland (54.2%), degraded lands/
forest openings (26.3%), agriculture (9.4%), and 
other LULCs. Sparsely vegetated areas prevail in the 
landscape, as adverse climate conditions (i.e., low 
annual precipitation total) limit plant growth in this 
sub-region (Yener, 2022). According to Erinç’s Arid-
ity Index (Erinç, 1965), the semi-arid climate type is 
dominant in Olur Forest Enterprise, with an annual 
average total precipitation of 430 mm (Duman, 2017; 
TMS, 2018). The climate data observed between 
1990 and 2018 shows that the annual average air 

Fig. 1   Location of Olur Forest Enterprise
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temperature is approximately 10  °C. Moreover, the 
study area has a harsh topography ranging from 830 
to 2840  m with an average slope of 42% (Fig.  1). 
Thus, shallow soils prevail in the area, mainly in the 
sandy loam texture. Regarding forest ecosystems, 
pure and even-aged stands exist in the productive for-
ests of the enterprise. In Turkish forestry, productive 
forest refers to any forested land with a tree canopy 
cover of more than 10% (FAO, 2000; GDF, 2017). 
The main tree species is Scots pine (Pinus sylvestris 
L.), where juniper (Juniper sp.) and poplar (Popu-
lus sp.) trees are also found individually in degraded 
lands. Land degradation is one of the most critical 
problems in the study area, as noted in the current 
forest management plan (GDF, 2015).

Field sampling

In order to represent the variation in different veg-
etation types, slope groups, and bedrock formations, 
we sampled 107 randomly selected plots from sev-
eral LULC classes during the summer of 2018. The 
number of samples was determined in such a way that 
each stand type would have at least one sample, while 
main LULC classes (e.g., forest, grassland, agricul-
ture) would still have at least 30 samples. Follow-
ing the national forest management guideline (GDF, 
2017), we installed circular plots of 400, 600, and 800 
m2 in forest stands with full, medium, and loose can-
opy cover, respectively. The non-forest plots, on the 
other hand, were 20 × 20 m square shaped. Since the 
plots differed in size, we standardized all the param-
eters measured in the field per hectare (ha) unit so 
that they could be compared to each other. The field 
sampling procedure consists of three distinct stages, 
as explained below;

1.	 Traditional timber survey: DBH of all trees 
above 8  cm, the height of the dominant trees 
(m), canopy cover ratio (%), stand age (year), 
and thickness of the annual growth rings of each 
species (mm) were measured in the first stage. 
Moreover, stem quality, stand origin (from high 
forest or coppice), regeneration status, health sta-
tus (infested by insects, fungi, or not infested), 
number of tree layers (one-, two-, or multiple-
layered), forest form (even-aged or uneven-aged), 
silvicultural status, and expected ESs (provision-

ing, regulating, or cultural) were observed and 
recorded in inventory sheets. Further information 
on the measurements and sampling design can be 
found in the GDF (2017).

2.	 Additional measurements and field observations: 
in this stage, the thickness of the litter layer (cm), 
height (cm) and ground closure (%) of under-
growth vegetation, stand basal area (m2 ha−1), 
surface stoniness (%), surface roughness (unit-
less), number of fallen deadwood (#), number of 
stumps (#) and their DBHs (cm), aspect (sunny 
or shady), and observed erosion type (e.g., rill, 
gully, sheet) were measured.

3.	 Soil sampling: disturbed topsoil samples (0–15 cm  
in depth) were collected after the litter and humus 
layers were removed. They were placed in plas-
tic bags, labeled, and taken to the soil laboratory 
of Artvin Coruh University (ACU) for analysis. 
Furthermore, soil moisture was determined in 
the field and recorded as five broad classes, from 
very dry to very wet.

Soil analyses

Collected soil samples were subjected to physical (tex-
ture) and chemical (organic matter) analyses in the soil 
laboratory. Soil samples were air-dried, cleaned of woody 
debris, and grounded before texture analysis. The Bouy-
oucos hydrometer method (Bouyoucos, 1962) was used 
to determine the percentage of silt, clay, and sand frac-
tions of each sampled soil. Subsequently, soil type was 
assigned using the USDA’s soil classification system.

Schumacher’s (2002) procedure was followed to deter-
mine the OM content in percent using the Walkley–Black 
wet oxidation method (Walkley & Black, 1934). Then, 
titration values were assessed using an Excel-based 
program.

Erosion prediction model

RUSLE model was used for estimating surface soil loss 
caused by water erosion processes such as sheet, rill, 
and interrill on the ground. The model uses five factors 
to quantify the annual surface soil loss, as Renard et al. 
(1997) formulated in Eq. 1.

(1)A = R × K × LS × C × P
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where A is the average annual soil loss (t ha−1   
year−1), R is the rainfall-runoff erosivity factor (MJ 
mm ha−1  h−1  year−1), K is the soil erodibility fac-
tor (t ha h ha−1 MJ−1 mm−1), LS is the slope length 
and steepness factor (unitless), C is the cover man-
agement factor (unitless), and P is the conservation 
support practices factor (unitless).

Rainfall‑runoff erosivity (R) factor

The R factor is the erosivity capacity of the kinetic 
energy of raindrops to the soil. Observed precipi-
tation data and digital elevation models (DEM) 
are utilized for calculating R factor. Its value can 
be computed using Eq.  2, proposed by Arnoldus 
(1977) and Wischmeier and Smith (1978). How-
ever, this value is only valid for the weather station 
from which the precipitation data was collected, 
and therefore, it should be distributed to the case 
study area. To that end, the Olur weather station’s 
data (elevation of 1395 m) and Eq. 3 by Renard and 
Foster (1998) were used to calculate new precipi-
tation amounts for the entire study area using the 
Spatial Analyst Tool within the ArcGIS and Eq.  4 
to interpolate altitude differences on precipitation 
(Erinç, 1996; Tüfekçioğlu & Yavuz, 2016). Equa-
tion 4 assumes that every 100-m increase in altitude 
results in a 54-mm increase in annual total precipi-
tation and vice versa (Erinç, 1996).

In Eqs.  2–4, Pi is the mean monthly precipita-
tion amount for the ith month (mm), P is the mean 
annual total precipitation amount (mm), Rnew is 
the new R factor value for a given pixel (MJ mm 
ha−1 h−1 year−1), Rstation is the original R factor value 
for the weather station (MJ mm ha−1  h−1  year−1), 
Pnew is the amount of new calculated mean annual 
total precipitation amount (mm), Pstation is the origi-
nal mean annual total precipitation amount recorded 
by the station (mm), and h is the altitude difference 
between the station and a given pixel (hm).

(2)R =
∑12

k=1
1.735 × 10(1.5log10(Pi

2∕P)−0.08188)

(3)Rnew = Rstation (Pnew∕Pstation) 1.75

(4)Pnew = Pstation ± 54h

Soil erodibility (K) factor

When all other erosion factors are held constant, 
some soil types more readily erode than others. The 
main reason for this difference is the properties of 
the soil itself which can be defined as soil erodibility, 
also known as the K factor in RUSLE (Wischmeier & 
Smith, 1978). K factor can be calculated using a nom-
ograph proposed by Wischmeier and Smith (1978) 
or other methods in the soil literature (i.a., Deviren 
Saygın et  al., 2011; Schmidt et  al., 2018a). Which-
ever method is chosen, they often use soil properties 
including structure, texture, permeability, and organic 
matter content in their formulizations. In this study, 
Torri et al. (1997) and Torri et al. (2002)’s formulas 
(Eqs. 5–6) were preferred to calculate K factor values.

where K is the soil erodibility factor (t ha h 
ha−1  MJ−1  mm−1), OM is the organic matter con-
tent in soil (%), fclay is the clay content in soil (%), 
Dg is the decimal logarithm of the geometric mean 
of particle size distribution, fi is the mass fraction of 
the related size class, di is the maximum diameter of 
the ith class (mm), and di-1 is the minimum diameter 
of the ith class (mm). Finally, K factor values calcu-
lated for each sample plot were interpolated to the 
entire study area using the inverse distance weighting 
(IDW) method in ArcGIS.

Slope length and steepness (LS) factor

In theory, slope length (L) and land steepness (S) sepa-
rately affect soil erosion processes. In practice, however, 
they are lumped together and incorporated into RUSLE 
as a single topographic factor—LS (Wischmeier & 
Smith, 1978). Because of rapid advancement in remote 
sensing and geospatial technologies, it is much easier to 
calculate and map the LS factor in GIS, even for broad 
areas through DEM data. In a GIS environment, L refers 
to flow accumulation times pixel size, whereas S refers 

(5)

K = 0.0293
(

0.65 − DG + 0.24DG
2
)

exp

[

−0.0021

(

OM

fclay

)

−0.00037

(

OM

fclay

)2

− 4.02fclay + 1.72fclay
2

]

(6)DG =
�

filog10(
√

didi−1)
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to the surface slope rate of each pixel in slope maps 
(Kinnell, 2001; Schmidt et al., 2019). Hence, the LS fac-
tor was calculated using Eq. 7 in the present study.

where flow accumulation is the accumulated upslope 
contributing area for each pixel (m2), cell size is 
the pixel size of the raster surface in GIS (m), and 
sin(slope) is the sinus of the surface slope rate (°). 
Here, it should be noted that the surface slope in 
degree units must be converted to radiance units by 
multiplying with a 0.01745 coefficient.

Cover management (C) factor

The effect of vegetation cover is represented by C 
factor (aka soil loss ratio) in RUSLE. It comprises 
five sub-factors which can be formulated as in Eq. 8 
(Renard et al., 1997).

where PLU is the previous land use, CC is the crown 
closure, SC is the surface cover, SR is the surface 
roughness, and SM is the soil moisture. Each sub-
factor depends on several biophysical variables on 
the ground. The term PLU describes the relationship 
between previous tillage practices’ impact on soil 
consolidation and the influence of previous crops’ 
sub-surface residual effects on erosion (Renard et al., 
1997). PLU values of 0.5 and 1 were provided for the 
land use classes classified as forests and other land 
uses, respectively, as used in the study by Suriyapra-
sit and Shrestha (2008). Using the equations given 
by Renard et  al. (1997), the CC sub-factor was cal-
culated within the 107 sample plots in the study area. 
For this, information on the average tree height at 
which raindrops land after touching the canopy and 
the percentage of the land area that the canopy cov-
ers are needed. They were measured and parameter-
ized for each sample plot, as explained in detail by 
Vatandaşlar and Yavuz (2017).

C factor is one of the most critical factors in the 
RUSLE model (Akgöz et al., 2022; Koralay & Kara, 
2022; Vatandaşlar & Yavuz, 2017). Unlike other fac-
tors, it is the unique one that may be rapidly changed 
by human intervention. Thus, all practitioners and 

(7)

LS = [(Flow accumulation × Cell size)∕22.13]0.4

× [Sin(Slope)∕0.0896]1.3

(8)C − factor = PLU × CC × SC × SR × SM

decision-makers can readily affect it without even 
realize. Therefore, spatial modeling of the C factor as 
accurately as possible is crucial, particularly in large 
heterogeneous landscapes such as Olur’s mountain-
ous watershed. To this end, erosion modelers from 
different parts of the world are continuously paying 
enormous efforts. They usually focus on develop-
ing robust models to estimate C factor values based 
on remote sensing indices, such as Fraction of Green 
Vegetation Cover (FGVC) or NDVI (de Jong, 1994; 
Schmidt et  al., 2018b; van der Knijff et  al., 1999; 
Vatandaşlar & Yavuz, 2017). NDVI is a well-known 
indicator for quantifying living vegetation’s health, 
distribution, and vigor. It uses the spectral differ-
ence between red and near-infrared bands of optical 
images, as formulated in Eq. 9 (Tucker, 1979).

where NIR is the digital number (DN) for a given 
pixel of the near-infrared band, and Red is the DN for 
a given pixel of the red band in multispectral imagery.

Following the NDVI-based modeling approach 
(Vatandaşlar & Yavuz, 2017), Pearson’s correlation 
analysis was first performed to examine possible rela-
tionships between ground-measured C factor values of 
each plot and their mean NDVIs derived from multi-
spectral imagery (35-cm-resolution aerial photos) by 
pixel basis. The correlation analysis was used to show 
potential relationships between the field-measured 
C factor and NDVI values (r =  − 0.80, p < 0.01). The 
adjusted coefficient of determination (R2

adj), root-
mean-squared error (RMSE), and residual analysis 
were used to determine the best-fit model. Then, using 
the best-fit model, the C factor values were obtained 
for the whole study area. The correlation analysis 
showed a strong, negative, and non-linear relationship 
between C factor and NDVI (r =  − 0.80, p < 0.01). 
The developed regression models are shown in Fig. 2. 
Among them, the best one was the logistic model 
(Eq. 10) with an R2

adj and RMSE of 0.87 and 0.065, 
respectively (Vatandaşlar, 2020).

where NDVI is the normalized difference vegetation 
index value in a given pixel on the NDVI map (unit-
less) and u is the upper prediction limit of the logistic 

(9)NDVI =
NIR − Red

NIR + Red

(10)c = 1∕(
1

u
+ (3, 003 ×

(

1623, 312NDVI
)

)
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model. Since C factor ranges from 0 to 1, u equals 1 
in the equation.

Conservation support practices (P) factor

P factor refers to human-made soil protection measures 
such as terrace systems, strip-cropping on the contour, 
and contour tillage. They are able to control soil erosion 
loss to a certain extent by slowing runoff water and thus 
reducing the amount of soil it can carry (Wischmeier 
& Smith, 1978). In this study, a value of “one (1)” was 
assigned to each pixel of the P factor map, assuming no 
conservation practice in the study area.

Sediment delivery ratio (SDR) and sediment yield 
(SY)

The average annual soil loss (A) calculated by 
RUSLE estimates surface soil transported within the 
study area which may not be totally carried away 
from the watershed. Therefore, SDR was first calcu-
lated to determine how much of the transported soil 
left the watershed. In the next step, the average annual 
soil loss was multiplied by the SDR to determine SY, 
defined as the amount of soil having left the water-
shed (Tüfekçioğlu & Yavuz, 2016). In the present 
study, Eqs. 11–12 were used for calculating SDR and 
SY, respectively (Boyce, 1975; USDA, 1983).

where SDR is the sediment delivery ratio of a given 
watershed (%), B is the total area of the watershed 
(km2), SY is the sediment yield of the watershed (t 
ha−1  year−1), and A is the average annual soil loss 
estimated by RUSLE (t ha−1 year−1).

Statistical tests

A series of statistical analyses were performed using 
the field data, to examine the possible relationships 
among the forest-related parameters, soil properties, 
and quantity of erosion control ES. The Kolmogo-
rov–Smirnov test was used to control the “normal 
distribution” of data sets. If the data were normally 
distributed, Pearson’s correlation analysis was per-
formed to understand the magnitude and nature of the 
correlative relationship among the measured data sets 
(e.g., growing stock and OM content). The Log trans-
formation of non-normal data was performed before 
performing a parametric test. On the other hand, inde-
pendent samples t test and analysis of variance (one-
way ANOVA) were used for categorical data such as 
forest form (even- or uneven-aged) and soil moisture 

(11)SDR = 0.5656 × B−0.11

(12)SY = SDR × A

Fig. 2   Regression relation-
ship between NDVI and C 
factor values
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classes (i.e., dry, wet). Finally, regression analysis 
was employed to model the relationships among some 
measured variables. All the tests were performed at 
a minimum 5% significance level (p < 0.05) using 
SPSS 20.0 statistical software (SPSS, 2012).

Results and discussion

Forest‑related parameters

Descriptive statistics for the structural param-
eters measured in the field are presented in Table 1. 
Accordingly, an average stand age of nearly 90 indi-
cates that Olur’s forests are generally mature and in 
their advanced developmental stages. The Scots pine 
forest stands in the study area have almost reached 
their rotation age, which was set at 100 years within 
the management plan (GDF, 2015). Except for for-
est compartments designated for non-provisional ESs 
(e.g., habitat protection and recreation), they must 
therefore be restored as soon as possible.

Table 1 also shows that the forests were not fully 
stocked in Olur Forest Enterprise. The mean growing 
stock and basal area values were only 162.4 m3 ha−1 
and 19.1 m2  ha−1, respectively, while the number 
of trees and canopy cover were approximately 432 
# ha−1 and 50%, respectively. A cover ratio of 50% 
refers to medium-covered forests closing half of the 
ground with their tree crowns (GDF, 2017). This 
means that the rest of the ground is unprotected 

from the erosive effects of raindrops, which are criti-
cal for most water-borne soil erosion processes. In 
another study by Vatandaşlar and Zeybek (2020) in 
Turkey, growing stock, basal area, and the number 
of tree parameters were reported to be as high as 690 
m3 ha−1, 62 m2 ha−1, and 1200 # ha−1. Although the 
two study areas were dissimilar in tree species and 
forest structure, the vast difference among the val-
ues implied that Olur’s forests were in quite poor 
condition in terms of wood stock. The high quantity 
of deadwood also supports this implication. Based 
on the timber survey, standing and lying deadwood 
averages were 20.2 # ha−1 and 14.8 # ha−1, respec-
tively (Table  1). Their sum (35.0 # ha−1) almost 
made up 10% of the total number of trees (432.6 # 
ha−1 on average). In a semi-arid national park in Tur-
key, Karahalil et  al. (2017) analyzed the deadwood 
volume in another pine-dominated forest. They sug-
gested that 2–3% of the total growing stock could 
be left in the forest for biodiversity. Thus, the dead-
wood quantity in our study area seems too high, even 
for a protected area. A possible reason for this might 
be the severe mistletoe (Viscum album ssp. austria-
cum) infestations observed in pure Scots pine stands, 
located at relatively low altitude belts (appr. 1400 m 
in Olur). Yavuz and Alkan (2016) investigated the 
effects of mechanically removing mistletoe species 
on Scots pine radial growth in the same region and 
found that 15% of radial growth was lost. Scots pine 
stands experienced growth losses of up to 67% prior 
to dieback, according to another study by Bilgili et al. 

Table 1   Descriptive 
statistics for stand 
parameters measured in the 
forest sample plots

Stand parameters Descriptive statistics

Min Mean Max S.D

Stand age (year) 23.0 88.8 152.0 28.7
Annual increment in DBH (mm) 1.0 2.8 8.0 1.7
Basal area (m2 ha−1) 0.0 19.1 47.0 12.3
Growing stock (m3 ha−1) 1.0 162.4 448.0 119.0
Stand top height (m) 4.0 11.7 24.0 7.2
Canopy cover (%) 4.0 50.9 85.0 22.6
Number of trees (# ha−1) 50.0 432.6 950.0 212.6
Number of standing deadwoods (# ha−1) 0.0 20.2 250.0 43.8
Number of fallen deadwoods (# ha−1) 0.0 14.8 300.0 42.8
Number of stumps (# ha−1) 0.0 70.8 399.0 88.9
Thickness of litter layer (cm) 0.0 3.1 7.0 2.3
Height of undergrowth vegetation (cm) 1.0 32.8 100.0 26.1
Closure of undergrowth vegetation (%) 3.0 43.1 80.0 21.7
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(2018). According to Duman (2017), the semi-arid 
climate in Olur is thought to be another factor con-
tributing to the poor wood stock. Given the observed 
meteorological data (TMS, 2018) and climate mod-
eling studies (i.a., Yener, 2022), the annual average 
precipitation totals in that sub-region decreased well 
below 400 mm owing to climatic variations. Such an 
amount of precipitation is insufficient for well natu-
ral forest development. Descriptive statistics for other 
stand parameters are shown in Table 1.

Soil properties

Descriptive statistics for the soil samples collected 
from the study area are shown in Table 2. The aver-
ages for the sand, clay, and silt fractions in the soil 
were 62.0%, 13.5%, and 24.5%, respectively. Thus, 
the soil texture of the general area showed a sandy 
loam characteristic according to the USDA’s soil 
classification system. These results align with those 
previously reported by Yavuz and Tufekcioglu (2019) 
and Duman (2017). Specifically, Duman (2017) stud-
ied nearby watersheds and reported average values of 
66.7%, 13.2%, and 20.1% for sand, clay, and silt frac-
tions in the soil. In this respect, Olur Forest Enter-
prise has no distinctive soil texture structure from 
its surroundings. On the other hand, an average OM 
content of 5.8% was found in the soil samples col-
lected. It might appear slightly high at first glance for 
an uncovered semi-arid region, but soil samples were 
mainly collected from the forest, the richest LULC 
regarding OM content. In another study, Yilmaz et al. 
(2015) collected soil samples from forest, agriculture, 
and grassland LULCs and found that soil OM content 
changed between 4.83% and 6.52% in Trabzon (NE 
Turkey). Thus, it was seen that the results obtained by 

the present study were in synergy with those of others 
in the region.

Regarding soil erodibility, the average K factor 
value was 0.040 t ha h ha−1  MJ−1  mm−1 (Table  2). 
It ranged from 0.032 t ha h ha−1  MJ−1  mm−1 
in clay-dominated forest soils to 0.048 t ha h 
ha−1  MJ−1  mm−1 in the sand- and silt-dominated 
open lands. Our results showed less soil erodibil-
ity rate than Yavuz and Tufekcioglu’s (2019) find-
ings (0.13 t ha h ha−1 MJ−1 mm−1) for the Uzundere 
sub-watershed located in northeastern Turkey. These 
were expected findings because clay soils are more 
resistant to erosional processes. In contrast, sandy 
and silt soils show little or no resistance to detach-
ment (Renard et al., 1997; Torri et al., 1997). Duman 
(2017) conducted a study analyzing the soil proper-
ties in the Coruh River Basin, including the Olur sub-
watershed. For Olur, the researcher calculated aver-
age K factor values of 0.050 t ha h ha−1 MJ−1 mm−1 
and 0.052 t ha h ha−1 MJ−1 mm−1 for degraded forests 
and grasslands, respectively. The slight differences 
between his and our values are attributable to the 
sampling design. Since it was an erosion project, the 
researcher mostly sampled soils from productive and 
degraded forestlands. In the present study, however, 
the focus was on productive forests to assess their ero-
sion control capacities. Here, it should be noted that 
the K factor statistics presented in Table 2 come from 
the collected soil samples. If they were interpolated to 
the entire study area, the zonal statistics results might 
show slight differences in the K factor map.

Environmental factors

Surface stoniness (%), slope length (m), slope rate 
(%), altitude above sea level (m), and surface rough-
ness (unitless) were chosen as the environmental 
factors and their descriptive statistics are shown 
in Table  3. Based on the field survey, the average 
surface stoniness was calculated to be 20%, and it 
changed considerably from 0 to 95%. This indicates 
a heterogenic landscape structure in terms of topsoil. 
Additionally, a mean stoniness ratio of 20% is an indi-
cator of a shallow soil layer, resulting in limited plant 
growth. In terms of erosion control, however, the 
stone layer may contribute to the ES provision capac-
ity of some LULC classes. Stones may play a sig-
nificant role in protecting soil resources against rain-
drops’ erosive effect (i.e., splash erosion). Thus, the 

Table 2   Descriptive statistics for soil analysis results

Soil parameters Descriptive statistics

Min Mean Max S.D

Sand fraction (%) 38.4 62.0 84.4 9.8
Clay fraction (%) 3.6 13.5 31.7 6.4
Silt fraction (%) 11.9 24.5 40.8 5.9
OM content (%) 0.6 5.8 10.0 2.4
Soil erodibility (K factor) 

(t ha h ha−1 MJ−1 mm−1)
0.032 0.040 0.048 0.004
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surface stoniness parameter should also be considered 
in erosion modeling and ES studies, as Panagos et al. 
(2014) noted.

As for surface roughness, an average value of 5.93 
was found in Olur Forest Enterprise (Table  3). This 
was relatively high compared to other studies that 
used the same method (Vatandaşlar et al., 2020). One 
reason for this may be the harsh topographic condi-
tion at the landscape scale. As shown in Fig.  3, the 
extreme geomorphology of the study area should lead 
to high surface roughness values. Another possible 
reason could be surface stoniness at the small (plot) 
scale. Stones and small rocks on the soil surface 

might have affected the smoothness. Thus, the sur-
face roughness increased on the slopes, as reported 
in another study by Thomsen et  al. (2015). In fact, 
a rough slope is desired at a small scale because it 
reduces the velocity of surface runoff. On the other 
hand, it limits plant growth in most cases, as well. 
Therefore, the surface roughness should also be stud-
ied further in erosion modeling studies which will be 
conducted in the future.

RUSLE outputs

Table  4 shows the values for individual RUSLE 
factors as well as the total amount of soil loss in 
the study area. Based on Boyce (1975)’s formula, 
the SDR for the study area was 0.271, suggesting 
that almost one-third of the transported soil car-
ries away from the Olur watershed. By multiply-
ing SDR with RUSLE’s A, the area-specific SY for 
the Olur Forest Enterprise was estimated to be an 
average of 15.8 t ha−1  year−1 (Table  4). It ranged 
from zero to 639.2 t ha−1  year−1 across the water-
shed. Erpul et al. (2018) published a national ero-
sion atlas containing all the major basins of Tur-
key. The Olur watershed is located in the Coruh 

Table 3   Descriptive statistics for environmental parameters 
measured in the sample plots

Environmental parameters Descriptive statistics

Min Mean Max S.D

Surface stoniness (%) 0 20.0 95 24.6
Slope length (m) 22 171.0 1300 212.9
Slope rate (%) 0 34.1 94 24.4
Altitude above sea level (m) 776 1721.5 2446 412.6
Surface roughness (unitless) 0 5.93 30 5.41

Fig. 3   An overview of geomorphological formations from the study area (photo: C. Vatandaşlar)
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River Basin in this atlas. While there was no spe-
cific estimation for our study area, the researchers 
estimated an average soil loss of 26 t ha−1  year−1 
for the whole basin. Thus, the Olur Forest Enter-
prise can be considered one of the sheltered water-
sheds in the Coruh River Basin. It can be attrib-
uted to this sub-region’s low precipitation amounts 
(< 450  mm in total) throughout the year (TMS, 
2018; Yener, 2022). Nevertheless, an average SY 
of 15.8 t ha−1  year−1 is still a high amount com-
pared to other sub-regions of the country. Using 
the RUSLE method, for example, Koralay and 
Kara (2022) estimated an average SY of 1.46 t 
ha−1  year−1 for the Değirmendere watershed in 
the eastern Black Sea sub-region. The difference 
in LULC shares of the two study areas may be a 
reason for the different results. Unlike Olur, almost 
half of the Değirmendere watershed is covered by 
dense forests.

In most erosion studies, the C factor is regarded 
as the most important factor in the RUSLE model 
(Akgöz et al., 2022; Schmidt et al., 2018b; van der 
Knijff et  al., 1999; Vatandaşlar & Yavuz, 2017). 
In the present study, massive efforts have been put 
into the C factor modeling stage, as mentioned in 
the methodology section. The residual distribu-
tions of several regression models can be visually 
compared in Fig.  4 together. The logistic model 
appeared to be the best (Fig.  4h), since its devia-
tion from the zero line (normal) was less, and its 
residuals were more balanced compared to other 
models. In addition, the R2 and RMSE values of 
the logistic model were superior to those exhibited 
by other models (Fig. 2). Thus, the logistic model 
was used to estimate C factor values in the RUSLE.

The relationships among soil, environmental, and 
forest‑related parameters

Correlations between continuous data

Statistically significant correlations between the 
parameters measured in the plots are presented in 
Table  5. Accordingly, a positive relationship was 
detected between the K factor and the closure of 
undergrowth vegetation (r = 0.39, p < 0.01). In other 
words, soil erodibility increased parallel with the 
undergrowth vegetation’s closure. Similarly, OM 
content positively correlated with stand top height, 
canopy cover, litter layer thickness, altitude, and 
the number of stumps in the Olur Forest Enterprise 
(Table  5). Among them, canopy cover showed the 
strongest correlation with the OM content in the 
soil (r = 0.66, p < 0.01).

For the clay fraction in the soil, positive corre-
lations were detected with basal area and canopy 
cover, whereas a negative correlation was observed 
between the clay fraction and the surface rough-
ness (Table  5). The silt fraction, on the other 
hand, showed weak positive relationships with the 
canopy cover and the closure of undergrowth veg-
etation, i.e., r = 0.31 and r = 0.35, respectively. 
However, their confidence levels were relatively 
high (p < 0.01). Similarly, another weak correla-
tion coefficient (r =  − 0.34) was found between the 
sand fraction and canopy cover (Table  5). Unlike 
the clay fraction, the direction of this fraction was 
negative, indicating that canopy cover in sandy soils 
was lower than that in other soil types. In another 
study, Yilmaz et al. (2015) found that the sand frac-
tion of soil was higher in broadleaved forests than in 

Table 4   RUSLE outputs 
with soil loss amounts for 
the study area

a A refers to the topsoil 
amount transported within 
the watershed
b SY refers to the soil losses 
washed away from the 
watershed

RUSLE factors Descriptive statistics

Min Mean Max S.D

Rainfall-runoff erosivity (R) factor (MJ mm ha−1 h−1 year−1) 7 324 925 139
Soil erodibility (K) factor (t ha h ha−1 MJ−1 mm−1) 0.0315 0.0398 0.0479 0.0017
Slope length and steepness (LS) factor (unitless) 0 9 7286 20
Cover management (C) factor (unitless) 0 0.091 0.999 0.089
Average annual soil loss (A) (t ha−1 year−1) a 0 58.3 2358.7 84.1
Sediment yield (SY) (t ha−1 year−1) b 0 15.8 639.2 22.8
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Fig. 4   Distribution of the residuals for each C factor model. a Linear, b polynomial, c cubic, d compound, e exponential, f growth, g 
inverse, h logistic models
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conifers. Since sandy soils are more susceptible to 
water-borne erosion processes, these findings sug-
gest that pure conifer stands should be promoted in 
forests designated for erosion control ES.

As shown in Table 5, there were statistically sig-
nificant correlations between all soil properties and 
the canopy cover parameter. Indeed, the canopy 
cover ratio of forest stands can be a helpful indica-
tor for assessing soil-related ESs. This can be attrib-
uted to the ecological processes on the forest floor 
in fully covered stands. These stands, in particular, 
have a lot of leaves, needles, and other dry materi-
als on the floor. They form a leaf litter layer, which 

gives the soil more protection. It also consists of a 
considerable amount of OM. The litter is decom-
posed over time, and thus, the chemical structure of 
the soil is influenced by these ecological processes 
(Berg & Laskowski, 2006). In contrast, OM content 
was lower in degraded forests, with a canopy cover 
of less than 10% (Duman, 2017; GDF, 2017). In 
line with our findings, Duman’s (2017) study indi-
cated that soil stoniness was generally high in these 
types of lands. Thus, in forests designated for soil 
protection, canopy cover ratios of stands should be 
kept as high as possible.

Table 5   Correlations 
among soil and other 
parameters measured in the 
field

a Only the correlations 
having r coefficients of 
more than ± 0.30 were 
presented in the table

Soil parameters Other parameters p-value 
(two-tailed)

Pearson’s ra

Soil erodibility (K factor) (t 
ha h ha−1 MJ−1 mm−1)

Closure of undergrowth vegetation  < 0.01 0.39

OM content (%) Stand top height  < 0.01 0.43
Canopy cover  < 0.01 0.66
Thickness of litter layer  < 0.01 0.46
Altitude  < 0.01 0.38
Number of stumps  < 0.05 0.30

Clay fraction (%) Basal area  < 0.05 0.35
Canopy cover  < 0.01 0.34
Surface roughness  < 0.01  − 0.30

Silt fraction (%) Canopy cover  < 0.01 0.31
Closure of undergrowth vegetation  < 0.01 0.35

Sand fraction (%) Canopy cover  < 0.01  − 0.34

Table 6   t test results for soil and other parameters

Soil parameters (continuous) Other parameters (categorical) p-value (two-tailed)

Soil erodibility (K factor) (t ha h 
ha−1 MJ−1 mm−1)

Rocks on forest floor (present vs. absent)  < 0.01
Lichen or moss (present vs. absent)  < 0.05

OM content (%) Stand mixture (pure vs. mixed)  < 0.001
Regeneration on forest floor (present vs. absent)  < 0.01
Observed erosion (present vs. absent)  < 0.05
Aspect (sunny vs. shadowed)  < 0.001
Anthropogenic pressure (present vs. absent)  < 0.001
Illicit cutting (present vs. absent)  < 0.001
Stumps on forest floor (present vs. absent)  < 0.001

Clay fraction (%) Rocks on forest floor (present vs. absent)  < 0.05
Silt fraction (%) Undergrowth vegetation (present vs. absent)  < 0.05

Lichen or moss (present vs. absent)  < 0.05
Sand fraction (%) Stumps on forest floor (present vs. absent)  < 0.05
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t test results for categorical data

All soil-related values significantly changed based 
on the categorical parameters, such as stand mix-
ture and aspect class (Table 6). In the sample plots, 
the presence of rock, lichen, and moss increased K 
factor values (p < 0.05). Similarly, the soil OM con-
tent was influenced by many categorical parameters 
(Table  6). For instance, the sampling plots with 
regeneration (saplings) had higher OM content, 
which is attributable to the richness of the growing 
site conditions. Conversely, the sampling plots with 
apparent erosion trails, such as rills, sheets, or gul-
lies, had lower OM since they had lost their fertile 
topsoil due to water-borne erosion.

The clay fraction in the soil differed based only on 
the presence of rocks on the forest floor (Table 6). As 
for silt fraction, however, the presence of undergrowth 
vegetation and lichen/moss richness increased it sig-
nificantly. Finally, the sand fraction was influenced 
only by the presence of stumps on the forest floor. If 
the sampling plots had any stumps, the sand fraction 
in the soil was higher than in those without stumps.

ANOVA results for categorical data

One-way ANOVA results showed that all soil prop-
erties differed depending on categorical variables 
consisting of more than two sub-groups (Table  7). 
Accordingly, the types of intervention to forest and 
rock size significantly changed the K factor values in 
the Olur Forest Enterprise. Unfortunately, no post hoc 
test was performed because of the lack of plots for 
each type. Thus, the cause-effect relationship could 
not be thoroughly examined for the K factor. OM 
content, on the other hand, differed based on eight 
parameters: LULC, stand type, regeneration status, 
soil moisture, observed erosion type, aspect class, 
anthropogenic pressure, and severity of illicit cutting. 
LULC classes, in particular, significantly changed 
OM content in the soil. Soils in productive forests 
were more prosperous than those in other LULC 
classes in terms of OM. Likewise, the soils of conifer 
stands had more OM than those of broadleaved and 
mixed stands. Another significant difference was in 
the aspect class: north-facing lands had higher OM 
content than the others.

Table 7   ANOVA results for soil and other parameters

Soil parameters (continuous) Other parameters (categorical) ANOVA 
p (two-
tailed)

Levene p Post hoc test

Soil erodib. (K factor) (t ha 
h ha−1 MJ−1 mm−1)

Silvicultural intervention (none, tending, thinning, regenera-
tion)

 < 0.05  > 0.05  − 

Rock size (small, medium, large)  < 0.01  > 0.05  − 
OM content (%) LULC (degraded forest, productive forest, agric., grassland)  < 0.001  > 0.05 Tukey

Stand type (broadleaved, conifer, mixed)  < 0.001  > 0.05 Tukey
Regeneration status (none, poor, moderate, strong)  < 0.05  > 0.05 Tukey
Soil moisture (very dry, dry, cool, moist, wet)  < 0.01  > 0.05 Tukey
Observed erosion (none, sheet, rill, gully, landslide, mass mov.)  < 0.05  > 0.05 Tukey
Aspect (N, NE, E, SE, S, SW, W, NW, flat)  < 0.001  > 0.05 Tukey
Ant. pressure (none, ill. cut., settl., grazing, recr., road, multi-

ple)
 < 0.01  < 0.01  − 

Severity of illicit cutting (none, slight, moderate, severe)  < 0.05  < 0.05 Tamhane
Clay fraction (%) LULC (degraded forest, productive forest, agric., grassland)  < 0.01  > 0.05 Tukey

Silvicultural intervention (none, tending, thinning, regenera-
tion)

 < 0.05  > 0.05  − 

Rock size (small, medium, large)  < 0.01  > 0.05  − 
Silt fraction (%) LULC (degraded forest, productive forest, agric., grassland)  < 0.001  > 0.05 Tukey
Sand fraction (%) LULC (degraded forest, productive forest, agric., grassland)  < 0.001  < 0.05 Tamhane

Soil moisture (very dry, dry, cool, moist, wet)  < 0.05  > 0.05 Tukey
Aspect (N, NE, E, SE, S, SW, W, NW, flat)  < 0.05  > 0.05 Tukey
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In terms of clay, agricultural areas had the high-
est clay fractions in the soil. Similarly, the types of 
silvicultural interventions and rock sizes significantly 
influenced the clay fraction in the Olur Forest Enter-
prise (Table  7). Regarding the silt fraction, LULC 
was the only parameter that influenced soil. Namely, 
soils of productive forests were siltier than those of 
the other LULC classes. This can be related to the 
study area’s dominant texture class (sandy loam). 
Finally, LULC, soil moisture, and aspect were found 
to be the driving factors of the sand fraction in the 
soil. In this respect, the soils of agricultural lands had 
less sand than the other LULCs.

In general, OM content in the soil was the most 
influenced soil property by categorical parameters. 
Additionally, the difference in LULC classes changed 

almost all soil properties in the Olur Forest Enterprise 
(Table  7). Hence, our study showed similar results 
to the findings of Yilmaz et al. (2015) regarding the 
effect of LULCs on soil erosion in Trabzon Province 
(NE Turkey).

The relationships among erosion control ES 
indicators and other parameters

Correlations between continuous data

The normalized difference vegetation index (NDVI), 
cover management factor (C factor), actual soil loss 
(i.e., RUSLE-A), maximum soil loss (i.e., bareland 
condition), prevented soil loss (i.e., soil retention), 
and soil protection performance index (SPPI) were 

Table 8   Correlations among ES indicators and other parameters

a Only the correlations having r coefficients of more than ± 0.50 were presented in the table

Indicators for erosion control ES Other parameters p-value (two-tailed) Pearson’s r a

Normalized Difference Vegetation Index (NDVI) (unit-
less)

Basal area  < 0.01 0.62
Growing stock  < 0.01 0.59
Stand top height  < 0.01 0.70
Canopy cover  < 0.01 0.76
Thickness of litter layer  < 0.01 0.65
Surface stoniness  < 0.01  − 0.58
OM content  < 0.01 0.67

Cover management factor (C factor) (unitless) Basal area  < 0.01  − 0.62
Growing stock  < 0.01  − 0.54
Stand top height  < 0.01  − 0.71
Canopy cover  < 0.01  − 0.76
Thickness of litter layer  < 0.01  − 0.63
Surface stoniness  < 0.01 0.65
OM content  < 0.01  − 0.67

Actual soil loss (t ha−1 year−1) Slope length  < 0.01 0.69
Maximum soil loss (t ha−1 year−1) Thickness of litter layer  < 0.01 0.53

Slope rate  < 0.01 0.51
Prevented soil loss  < 0.01 0.99

Prevented soil loss (t ha−1 year−1) Thickness of litter layer  < 0.01 0.54
Slope rate  < 0.01 0.50

Soil Protection Performance Index (SPPI) (%) Stand top height  < 0.01 0.59
Canopy cover  < 0.01 0.69
Thickness of litter layer  < 0.01 0.59
Surface stoniness  < 0.01  − 0.62
OM content  < 0.01 0.63
NDVI  < 0.01 0.82
C factor  < 0.01  − 0.93
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considered as performance indicators for erosion 
control ES. This sub-section examines the relation-
ships among these indicators and other measured 
parameters statistically. The significant correlations 
are shown in Table  8. Accordingly, a negative cor-
relation was observed between NDVI and surface 
stoniness. In contrast, positive relationships were 
found between NDVI and basal area, growing stock, 
stand top height, canopy cover, the thickness of the 
litter layer, and soil OM. Among them, the stand top 
height and canopy cover showed relatively strong 
correlations (r = 0.70 and r = 0.76, respectively). 
This is not surprising because NDVI is a practical 
remote sensing index, providing quantitative infor-
mation on the quantity, distribution, and vigor of 
living vegetation in a given area (Tucker, 1979). 
Tokgöz and Say (2021) also state that, typically, a 
positive correlation exists between NDVI and ES 
value. In this respect, many studies model the struc-
tural parameters of forests using NDVI maps derived 
from remotely sensed images (Bulut et  al., 2016; 
Kayitakire et al., 2006; Yavuz & Hall, 2018). How-
ever, the correlation coefficients for the thickness of 
the litter layer and OM content were lower because 
they could not be detected by optical remote sensing.

Similar to the NDVI, the same parameters showed 
significant correlations with the C factor, but their 
directions were opposite (Table 8). The C factor con-
siderably shapes the soil loss ratio in the RUSLE 
erosion prediction model (Renard et  al., 1997). As 
demonstrated by Knijff et  al. (1999), it has a strong 
and inverse relationship with NDVI. When the C fac-
tor increases, the NDVI generally decreases. Thus, it 
can be effectively modeled using NDVI, as done in 
Eq. 10. That is why the same parameters showed sim-
ilar magnitudes but opposite directions, as shown in 
Table 8.

The slope length was the only parameter that 
showed a significant correlation with actual soil 
loss (Table  8). The correlation coefficient was 
rather strong (r = 0.69). This was expected because 
the actual soil loss was estimated using RUSLE. In 
RUSLE, the slope length (L factor) is an individual 
parameter in the equation. It is well known that a 
slope’s length significantly affects surface runoff, 
resulting in accelerated soil erosion (Renard et  al., 
1997).

Maximum soil loss (i.e., bareland conditions) 
showed a positive correlation with the thickness of 

the litter layer, slope rate, and prevented soil loss. The 
relationship with slope can be attributed to the model 
structure of RUSLE since it is in RUSLE’s equa-
tion as S factor. In another study, Oudenhoven et al. 
(2015) obtained similar findings. They found that soil 
loss increased with an increasing slope in the grass-
land LULC class. In our case, both maximum and 
prevented soil losses were derived by RUSLE’s A—
annual actual soil loss. If the maximum soil loss is 
high, prevented soil loss will also be high. However, 
the correlation between maximum soil loss and litter 
layer thickness cannot be explained by our knowl-
edge. Maybe, it was a random statistical relation.

Since maximum soil loss is highly correlated with 
prevented soil loss, the same parameters showed simi-
lar correlations with it (Table 8). The prevented soil 
loss increased as the litter cover increased. This is 
meaningful because the litter layer has a protective 
function in the topsoil. Chi et al. (2008), for instance, 
installed erosion plots in fir forests with and with-
out litter. After the field measurements, they calcu-
lated that the plots without the litter layer yielded 71 
times more soil loss than the other plots. From these 
findings, along with those presented in Table 8, it is 
understood that the litter layer on the forest floor is 
crucial for erosion control ES.

As for SPPI, many parameters showed a positive 
or negative correlation (Table 8). Except for the sur-
face stoniness and C factor parameters, the directions 
of the correlations were positive. Accordingly, stand 
top height positively correlated with SPPI (r = 0.59). 
It is attributable to the relationship between site qual-
ity and top height. Namely, stand top height is higher 
in good growing sites (Seki & Sakici, 2022), and 
tally trees typically have larger canopies with lots of 
branches, leaves, and needles. Thus, they can effec-
tively protect the topsoil against the kinetic energy of 
raindrops (Barnes et  al., 1998). Besides, their large 
canopies reduce the amount of water reaching the 
soil surface due to interception. As a result, the soil 
erosion rate decreases under forest cover. Therefore, 
SPPI was higher in dense forest stands.

Except for prevented soil loss, the highest correla-
tion coefficient was found between SPPI and C fac-
tor (Table 8). The NDVI parameter took second place 
after the C factor, with an r coefficient of 0.82. These 
findings indicate that SPPI can be computed using 
the NDVI. Thus, the SPPI can be spatially estimated 
based on a NDVI map and an appropriate regression 
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model. Here, NDVI is preferred over the C factor as 
an estimator because field measurement and calcula-
tion of the C factor have several difficulties, as dis-
cussed in Vatandaşlar and Yavuz (2017).

It should also be noted that only the correlations 
with r > 0.50 are presented in Table 8 (p < 0.05). Nev-
ertheless, all p values are less than 0.01 in the table, 
which is more than expected for forest research. In 
many other forestry studies, a p-value of 0.05 is con-
sidered sufficient for showing a statistically signifi-
cant difference between the two groups (i.a., Seki & 
Sakici, 2022).

t test results for categorical data

Independent samples t test showed that all indicators 
of erosion control ES differed significantly depending 
on some categorical parameters, such as stand mix-
ture and aspect class (Table 9). Accordingly, the aver-
age C factor was lower in pure stands than in mixed 
stands. Likewise, it was smaller in infected stands than 
in healthy ones. The presence of undergrowth veg-
etation in forest stands also increased C factor values. 
This may be explained by the canopy cover parameter. 
Indeed, dense undergrowth is generally seen in loosely 
covered forests due to exposure to excessive sunlight 
(Barnes et al., 1998). In parallel, the C factor increases 
as the ratio of tree crowns decreases in these forests 
(Vatandaşlar & Yavuz, 2017).

The forests with multiple layers had lower C fac-
tor averages than the one-layered forests. This pro-
vides support to the general assumption that “multi-
layered forests are better for soil protection” (GDF, 
2017; Kalıpsız, 1982). On the other hand, the C factor 
averages were higher if any erosion trail existed in the 
plots. Active erosion processes such as sheets, rills, 
and gullies generally transport productive topsoil 
with living vegetation. By doing so, it contributes to 
an increase in C factor values. Regarding aspect, the 
north-facing (shadowed) forest plots had lower C fac-
tor averages, possibly due to the moist environment, 
which was favorable for plant growth (Kantarcı, 
2000). The other parameters influencing the C factor 
are listed in Table 9.

Actual soil loss (RUSLE-A) was influenced by four 
parameters, including stand mixture, observed erosion, 
aspect, and stumps on the forest floor (Table 9). It was 
significantly lower in the pure stands, dominating 
the study area. In Olur Forest Enterprise, forestlands 

mostly consisted of one evergreen species, Scots 
pine. In contrast, few mixed stands in Olur consisted 
of broadleaved species, such as poplar and oak. They 
are generally located in degraded lands or along ripar-
ian zones. We believe that this is the main reason for 
the reduced erosion rates in the pure conifer forests. 
As expected, erosive sites and south-facing (sunny) 
aspects increased soil loss. Indeed, field observations 
clearly showed that more arid and sunny aspects had 
no or sparse vegetation cover (Fig.  1). Thus, higher 
soil loss amounts were estimated for this aspect class. 
Duman (2017) also reported similar findings for 
accelerated erosion in the Olur Watershed. Finally, the 
presence of stumps on the forest floor decreased the 
actual soil loss, possibly by reducing the velocity of 
runoff on the floor without litter.

As for maximum soil loss, this indicator was sig-
nificantly influenced by the stand mix and the pres-
ence of lichen or moss (Table 9). Specifically, maxi-
mum soil loss was higher in pure forest stands than 
in mixed stands. Similarly, it had a higher average in 
forests with lichens or moss. However, maximum soil 
loss should not be considered a real-world problem 
on the ground. It simulates soil loss in a scenario area 
without vegetation cover (Vatandaşlar, 2020). In this 
respect, maximum soil loss may be high on the upper 
slopes of sub-alpine lands where lichen and moss 
prevail on tree trunks, as well as on the forest floor. 
Since these highlands take high amounts of rainfall 
(i.e., R factor in RUSLE), maximum soil loss will 
also increase (Tüfekçioğlu & Yavuz, 2016).

Three parameters caused significant differences in 
the amount of prevented soil loss in Olur (p < 0.05). 
They were the stand mixture, the presence of lichen/
moss, and the presence of Astragalus sp. (Table  9). 
The difference caused by the stand mixture was the 
same as that of the maximum soil loss. Prevented soil 
loss was higher in the forest plots with lichen and/or 
moss because they provided an additional protection 
layer to the topsoil. Likewise, the presence of Astra-
galus sp., especially in the degraded and sparsely 
covered forests, significantly increased the prevented 
soil loss in Olur. This is expected because it is a well-
known species used to combat erosion in the region 
(Zengin et  al., 2009). Thus, the protective effects of 
these kinds of shrubs or herbaceous vegetation should 
not be underestimated (Fig. 5). Instead, their distribu-
tion may be promoted where woody vegetation can-
not grow.
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Table 9   t test results for ES indicators and other parameters

Indicators for erosion control ES Other parameters (categorical) p-value (two-tailed)

Cover management factor (C factor) (unitless) Stand mixture (pure vs. mixed)  < 0.001
Stand health (healthy vs. infected)  < 0.01
Undergrowth vegetation (present vs. absent)  < 0.05
Regeneration on forest floor (present vs. absent)  < 0.01
Stand layerness (one layer vs. multiple layer)  < 0.01
Silvicultural intervention (present vs. absent)  < 0.001
Observed erosion (present vs. absent)  < 0.001
Aspect (sunny vs. shadowed)  < 0.001
Anthropogenic pressure (present vs. absent)  < 0.001
Illicit cutting (present vs. absent)  < 0.01
Standing deadwood (present vs. absent)  < 0.05
Fallen deadwood (present vs. absent)  < 0.01
Stumps on forest floor (present vs. absent)  < 0.001
Residues on forest floor (present vs. absent)  < 0.001

Actual soil loss (t ha−1 year−1) Stand mixture (pure vs. mixed)  < 0.05
Observed erosion (present vs. absent)  < 0.01
Aspect (sunny vs. shadowed)  < 0.01
Stumps on forest floor (present vs. absent)  < 0.05

Maximum soil loss(t ha−1 year−1) Stand mixture (pure vs. mixed)  < 0.001
Lichen or moss (present vs. absent)  < 0.001

Prevented soil loss (t ha−1 year−1) Stand mixture (pure vs. mixed)  < 0.001
Lichen or moss (present vs. absent)  < 0.001
Astragalus sp. (present vs. absent)  < 0.05

Soil Protection Performance Index (SPPI) (%) Stand mixture (pure vs. mixed)  < 0.01
Regeneration on forest floor (present vs. absent)  < 0.01
Stand layerness (one layer vs. multiple layer)  < 0.01
Silvicultural intervention (present vs. absent)  < 0.001
Observed erosion (present vs. absent)  < 0.001
Aspect (sunny vs. shadowed)  < 0.001
Anthropogenic pressure (present vs. absent)  < 0.001
Illicit cutting (present vs. absent)  < 0.01
Fallen deadwood (present vs. absent)  < 0.05
Stumps on forest floor (present vs. absent)  < 0.01
Residues on forest floor (present vs. absent)  < 0.001

Normalized Difference Vegetation Index (NDVI) 
(unitless)

Stand mixture (pure vs. mixed)  < 0.001
Regeneration on forest floor (present vs. absent)  < 0.05
Stand layerness (one layer vs. multiple layer)  < 0.05
Silvicultural intervention (present vs. absent)  < 0.01
Observed erosion (present vs. absent)  < 0.001
Aspect (sunny vs. shadowed)  < 0.001
Anthropogenic pressure (present vs. absent)  < 0.001
Illicit cutting (present vs. absent)  < 0.01
Fallen deadwood (present vs. absent)  < 0.05
Stumps on forest floor (present vs. absent)  < 0.001
Residues on forest floor (present vs. absent)  < 0.01
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SPPI was markedly influenced by many param-
eters in the Olur Forest Enterprise (p < 0.05). Pure 
stands, for example, showed superior performance in 
terms of soil protection. Similarly, stands with regen-
eration cover on the forest floor showed a higher per-
formance than those of stands without regeneration. 
This indicates that the regeneration cover provides 
an additional layer for soil protection, such as litter. 
The average SPPI of layered stands was higher than 
that of one-layered stands. It is an already-known for-
est structure that promotes soil protection (Kalıpsız, 
1982; Yavuz & Hall, 2018; Vatandaşlar et al., 2020). 
As in the C factor, north-facing forest plots were 
better for soil protection due to wetter conditions in 
shadowed areas (Barnes et  al., 1998). More impor-
tantly, the plots with stumps and residuals on the for-
est floor had a higher SPPI than the others. This can 
be attributed to the reduced velocity of surface runoff, 

as well as the “mulch effect” of the residuals. Thus, it 
can be recommended that tree stumps and harvesting 
residuals should be left on the forest floor.

Finally, NDVI was influenced by 11 parameters 
measured on the ground (Table  9). Most of their 
significance values were less than 0.001, indicating 
that statistically very significant differences existed. 
The parameters were similar to those of the C factor 
because NDVI is an independent variable in C fac-
tor models (Vatandaşlar & Yavuz, 2017). Therefore, 
these parameters are not repeated here.

In brief, (i) C factor was the most affected indica-
tor in Table 9; (ii) the parameters influencing the C 
factor also caused differences in the NDVI means; 
(iii) since actual/maximum/prevented soil losses were 
mostly shaped by topography and climate, they were 
less affected by forest structural parameters; (iv) the 
parameters influencing maximum and prevented soil 

Fig. 5   Photographs demonstrating the effect of Astragalus sp. on soil protection (left-photo: Aydın Tüfekçioğlu) and a Scots pine 
tree resisting soil erosion (right-photo: Mehmet Yavuz) in the study area
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losses were almost the same for the Olur Forest Enter-
prise; and (v) the stand mixture caused differences in 
almost all ES indicators documented in Table 9.

ANOVA results for the categorical data

One-way ANOVA results showed that all ES indica-
tors differed depending on categorical parameters 
with more than two sub-groups. The average C fac-
tors, for example, were significantly influenced by 
nine variables, including LULC, stand type, and 
regeneration status (p < 0.05) (Table  10). Accord-
ingly, the C factor was minimal in productive forests, 
with a canopy cover of more than 10%. It means that 
the best soil protection is provided by dense forests, 
as expected. In terms of stand type, there was no 
significant difference between the broadleaved and 
mixed forest stands. In conifers, however, the C factor 
was lower than that of the others. As previously seen 
in the t test, shadowed aspects were more sheltered 
than the sunny ones in the ANOVA results. Regard-
ing soil types, at least one group showed a significant 
difference, but it could not be detected using a post 
hoc test due to insufficient sampling data.

The averages for actual soil loss differed depend-
ing on LULC, stand type, observed erosion, aspect, 
and rock size (Table 10). It was statistically lower in 
productive forests than in degraded forests and grass-
lands (p < 0.001). In terms of the observed erosion 
types, there was no difference in the averages, except 
for rill and mass movement. Annual potential soil loss 
was higher in sampling plots with rills than in those 
with the mass movement. Similarly, a significant dif-
ference was found between the flat and east-facing 
plots (p < 0.001). The erosion rate was minimal in 
flat areas, as they had no ground slope (Renard et al., 
1997).

Maximum and prevented soil losses were only 
changed by LULC and stand type classes (Table  10). 
Their averages were lower in productive forests than 
in degraded forests and agricultural lands. Regarding 
stand types, the average of coniferous forests was found 
to be higher than that of both broadleaved and mixed 
forests. The reason for the similarity of both results was 
the strong correlation between the maximum and pre-
vented soil losses, as shown in Table 8. In other words, 
the higher the maximum soil losses, the higher the pre-
vented soil losses.

As for the SPPI, the productive forest was the best 
LULC class among all. Specifically, the average SPPI 
for conifers was higher than that for the others. Pure 
conifer forests again were superior to both broadleaved 
and mixed forests. Soil protection in the plots without 
severe erosion hazard was better than that in plots with 
any observed erosion trails. Regarding aspect class, the 
forests located in shadowed aspects protect soil bet-
ter than those found in sunny aspects. The difference 
between the two aspect classes was observed for many 
indicators. It is indirectly related to the high cover rates 
on north-facing slopes in Turkey due to the moister 
microclimate (GDF, 2015; Kantarcı, 2000). In addition, 
there were significant differences in the C factor aver-
ages based on the soil type (Table 10) but, once again, 
post hoc tests could not be performed because of insuf-
ficient soil samples of each type.

Finally, the average NDVI differed almost in all 
LULCs, except for grassland and degraded forest. 
Specifically, productive forests had the highest NDVI 
averages, as expected. The same difference was also 
observed in the C factor (Table 10). As for stand types, 
pure conifers had the highest average. This can be 
attributed to their higher total leaf area relative to that 
of broadleaves (Asan, 2017). In terms of the diameter 
class of stumps, the only difference was seen between 
the pole (i.e., I. class: 8–19.9  cm) and other classes 
(i.e., ≥ 20 cm). The NDVI averages of different classes 
were higher than those of the thin classes. Since the C 
factor was derived from NDVI, other variables showed 
similar differences with the C factor.

Briefly, (i) NDVI was the most influenced indica-
tor by other parameters; (ii) LULC class and stand type 
parameters significantly changed the averages of all 
indicators (p < 0.01); (iii) observed erosion and aspect 
class parameters changed the averages of most indi-
cators; and (iv) the same parameters (i.e., LULC and 
stand type) had meaningful effects on both maximum 
and prevented soil losses.

New indicators, study’s limitations, 
and an outlook

As a performance indicator, SPPI provides valuable 
information on the erosion control ES of forests 
at the stand level. Thus, it may help quantify and 
integrate the ES value into forest management and 
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Table 10   ANOVA results for ES indicators and other parameters

Indicators for erosion control ES 
(continuous)

Other parameters (categorical) ANOVA p-value Levene p-value Post hoc test

Cover management factor (C factor) 
(unitless)

LULC (degraded f., productive f., 
agriculture, grassland)

 < 0.001  < 0.001 Tamhane

Stand type (broadleaved, conifer, mixed)  < 0.001  < 0.01 Tamhane
Regeneration status (none, poor, 

moderate, strong)
 < 0.01  < 0.001 Tamhane

Obs. erosion (none, sheet, rill, gully, 
landslide, mass mov.)

 < 0.001  < 0.01 Tamhane

Aspect (N, NE, E, SE, S, SW, W, NW, 
flat)

 < 0.001  < 0.01 Tamhane

Soil type (scl, cl, sl, l, ls, sc) a  < 0.001  < 0.05  − 
Ant. press (none, ill.cut., settl., graz., 

recr., road, multiple)
 < 0.01  < 0.001  − 

Severity of illicit cutting (none, slight, 
moderate, severe)

 < 0.05  < 0.001 Tamhane

Diameter class of stumps (I, II, III, IV) b  < 0.01  < 0.001 Tamhane
Actual soil loss (t ha−1 year−1) LULC (degraded f., productive f., 

agriculture, grassland)
 < 0.001  < 0.001 Tamhane

Stand type (broadleaved, conifer, mixed)  < 0.01  < 0.01 Tamhane
Obs erosion (none, sheet, rill, gully, 

landslide, mass mov.)
 < 0.001  < 0.001 Tamhane

Aspect (N, NE, E, SE, S, SW, W, NW, 
flat)

 < 0.001  < 0.001 Tamhane

Rock size (small, medium, large)  < 0.01  > 0.05  − 
Maximum soil loss (t ha−1 year−1) LULC (degraded f., productive f., 

agriculture, grassland)
 < 0.001  < 0.001 Tamhane

Stand type (broadleaved, conifer, mixed)  < 0.01  < 0.01 Tamhane
Prevented soil loss (t ha−1 year−1) LULC (degraded f., productive f., 

agriculture, grassland)
 < 0.001  < 0.001 Tamhane

Stand type (broadleaved, conifer, mixed)  < 0.01  < 0.001 Tamhane
Soil Protection Performance Index 

(SPPI) (%)
LULC (degraded f., productive f., 

agriculture, grassland)
 < 0.001  < 0.001 Tamhane

Stand type (broadleaved, conifer, mixed)  < 0.001  < 0.01 Tamhane
Regeneration status (none, poor, 

moderate, strong)
 < 0.01  < 0.001 Tamhane

Obs. erosion (none, sheet, rill, gully, 
landslide, mass mov.)

 < 0.001  < 0.001 Tamhane

Aspect (N, NE, E, SE, S, SW, W, NW, 
flat)

 < 0.001  < 0.01 Tamhane

Soil type (scl, cl, sl, l, ls, sc) a  < 0.001  < 0.05  − 
Ant. press. (none, ill.cut., settl., graz., 

recr., road, multiple)
 < 0.05  < 0.001  − 

Severity of illicit cutting (none, slight, 
moderate, severe)

 < 0.05  < 0.001 Tamhane
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planning. The findings obtained in the present study 
showed that SPPI could be calculated using NDVI 
as a predictor (Eq.  13). In essence, C factor is a 
more reliable predictor than NDVI; however, C fac-
tor modeling is cumbersome due to its field meas-
urement difficulties (Vatandaşlar & Yavuz, 2017). 
Therefore, we evaluate that calculating NDVI val-
ues is much easier than calculating the C factor 
owing to the multispectral remote sensing images. 
Thus, the simplest model structure (linear) was used 
in the following equation. The adjusted coefficient 
of determination for this equation was 0.90. It was 
also meaningful in terms of model coefficients, as 
well as the model itself (p < 0.05) (Kalaycı, 2009).

where SPPI is the Soil Protection Performance Index 
(%), and NDVI is the Normalized Difference Vegeta-
tion Index (unitless). Using the NDVI, Eq.  13 esti-
mates the SPPI at the pixel level via remotely sensed 
optical images. It may also be upscaled to larger (e.g., 
stand, compartment, landscape) levels in any GIS 
software.

(13)SPPI = (0.802 + 0.260 × NDVI) × 100

Actual soil loss and erosion risk maps are the pri-
mary outputs of most erosion prediction models, 
including RUSLE (Renard et  al., 1997). Such infor-
mation is also crucial for ES assessments during for-
est planning (Baskent, 2020; Knoke et al., 2021; Tie-
mann & Ring, 2022). In this way, forests located in 
risky areas are set aside for erosion control ES (aka 
soil protection function in Turkey and Europe) in for-
est management plans (GDF, 2017). However, forest 
planners rarely utilize erosion risk maps in their plan 
renewals, as they are often challenging to produce in 
a short time (i.e., 6–8 months). Instead, they allocate 
these lands based only on slope rate and rough field 
observations. In Turkey, for example, if the slope is 
more than 60% in forested areas, these sites are desig-
nated for soil protection in forest plans (GDF, 2017). 
In the present study, a model was developed for the 
rapid assessment of annual soil loss without run-
ning RUSLE (Eq.  14). The model only uses NDVI 
and ground slope parameters to estimate the soil loss 
(RUSLE-A). The adjusted coefficient of determina-
tion was 0.57. It was also statistically meaningful at 
the 0.05 significance level.

a scl sandy clay loam, cl clay loam, sl sandy loam, l loam, ls loamy sand, sc sandy clay
b I. class: 8–19.9 cm; II. class: 20–35.9 cm; III. class: 36–51.9 cm; IV. class: ≥ 52 cm

Table 10   (continued)

Indicators for erosion control ES 
(continuous)

Other parameters (categorical) ANOVA p-value Levene p-value Post hoc test

Normalized Difference Vegetation Index 
(NDVI) (unitless)

LULC (degraded f., productive f., 
agriculture, grassland)

 < 0.001  < 0.01 Tamhane

Stand type (broadleaved, conifer, mixed)  < 0.001  > 0.05 Tukey

Regeneration status (none, poor, 
moderate, strong)

 < 0.05  < 0.001 Tamhane

Soil moisture (very dry, dry, cool, 
moist, wet)

 < 0.05  < 0.05 Tamhane

Obs. erosion (none, sheet, rill, gully, 
landslide, mass mov.)

 < 0.001  < 0.001 Tamhane

Aspect (N, NE, E, SE, S, SW, W, NW, 
flat)

 < 0.001  < 0.001 Tamhane

Soil type (scl, cl, sl, l, ls, sc) a  < 0.001  < 0.001  − 

Ant. press (none, ill.cut., settl., graz., 
recr., road, multiple)

 < 0.01  < 0.001  − 

Severity of illicit cutting (none, slight, 
moderate, severe)

 < 0.05  < 0.001 Tamhane

Diameter class of stumps (I, II, III, IV) b  < 0.001  > 0.05 Tukey
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where ASL is the annual soil loss (the RUSLE’s A 
factor in t ha−1  year−1) for Olur Forest Enterprise, 
NDVI is the Normalized Difference Vegetation Index 
(unitless), and S is the ground slope rate of each pixel 
(%). Using these variables, the equation estimates 
Olur’s ASL at the pixel level using the NDVI layer 
derived from the 35-cm-resolution, color-infrared 
aerial photos. It can then be upscaled to the stand or 
landscape levels.

Besides the regression models, some correlative 
relations detected in this study could also be used in 
a management planning context. The statistical analy-
ses showed that the change in LULC classes caused 
differences in almost all indicators of soil and ero-
sion control ES. In particular, sandy soils prevailed in 
degraded forest and grassland classes in Olur Forest 
Enterprise. As sandy soils are generally known to be 
susceptible to erosion (Renard et al., 1997; Şengönül 
& Şahin, 2017), soil protection activities should be 
the focus here. These findings are mostly supported 
by related literature, such as Yilmaz et al. (2007) and 
Yilmaz et al. (2015).

On the other hand, poor statistical relationships 
were found between the structural parameters of for-
est and soil properties. Nevertheless, the K factor 
(soil erodibility) increased with increasing under-
growth vegetation and ground slope. In another study, 
Oudenhoven et  al. (2015) reported similar results. 
In their case, soil erosion and surface runoff rates 
increased with increasing ground slope. Aside from 
the K factor, soil OM content increased with increas-
ing canopy cover and altitude in our study area.

Regarding OM, coniferous stands contained more 
soil OM than broadleaved and mixed forest stands. 
Since a high OM content is favorable for soil protec-
tion (Renard et  al., 1997; Torri et  al., 1997), practi-
tioners should increase stand density in the forest. 
Additionally, they may prefer conifer species over 
broadleaves in their afforestation and rehabilitation 
efforts for maximizing erosion control ES value.

As for limitations, we note that our assessments 
and recommendations are site-specific and gener-
ally based on “potential soil losses” in the Olur For-
est Enterprise. Therefore, caution should be paid for 
extending the results from this study to other forest 
sites. In contrast to the previous recommendation, for 

(14)ASL = −2.293 +
1.781

NDVI
+ 0.000091 × S2

example, Vatandaşlar et al. (2020) suggest that mixed 
stands maximize erosion control in moist forests with 
a dense and uneven-aged structure. Moreover, poten-
tial soil loss estimates may show significant uncer-
tainties. It may negatively affect the outputs yielded 
by the proposed models, so ideally, models should be 
validated with other experiments by installing erosion 
and/or runoff plots on the ground. By doing so, the 
“actual provision” of erosion control ES can be calcu-
lated more correctly. Another limitation of this study 
relates to the number and distribution of sample plots 
which are sometimes insufficient for certain categori-
cal variables. While we distributed our plots accord-
ing to vegetation, slope, and bedrock classes, there 
was still a lack of samples, for example, for each soil 
type (e.g., silty clay, loam). Therefore, we could not 
perform a post hoc test for such categorical variables 
after ANOVA.

Conclusion

Based on ground measurements, useful models and 
indicators for evaluating erosion control ES in a semi-
arid forest enterprise were developed in the present 
study. Forest planners can use the presented regres-
sion models to quantitatively assess the level of soil 
protection in various LULC classes (or forest stands) 
using NDVI as a performance indicator. Besides, 
they are able to estimate the enterprise’s annual soil 
losses (RUSLE-A) without running RUSLE. Thus, 
the amount of ES provision, as well as erosion hot-
spots, can quickly be mapped and forest stands, which 
will be allocated for erosion control ES, can be deter-
mined in forest management plans. Digital elevation 
models (DEM) and color-infrared aerial photos (or 
satellite images), supplied to forest planners during 
the renewal of their plans, are the only data sources 
that will work for this.

Statistical relationships among the indicators 
were also examined in this study. Prominent findings 
showed that soil erodibility was higher in sparsely 
covered forests on slopes with undergrowth vegeta-
tion. In contrast, fully covered forests in highlands 
had more soil OM, resulting in resistance to erosion. 
Specifically, soil OM content was significantly higher 
in coniferous forests than in other forest cover types. 
Moreover, degraded forests and grasslands had more 
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sandy soils than other LULCs, indicating that they 
were more prone to water-borne erosion. Indeed, the 
LULC class was one of the prominent factors affect-
ing almost all soil- and ES-related parameters.

Given the findings and assessments summarized 
throughout the study, several recommendations can 
be made to environmental managers for increasing 
the provisional capacity of erosion control ES;

	 I.	 Reaching an uneven-aged stand structure with 
multiple layers should be aimed at silvicultural 
interventions in the forest. If it is impossible due 
to site conditions, pure and two-layered forests 
with conifers may be promoted. The stand den-
sity and canopy cover ratio must be as high as 
possible.

	II.	 Forest openings, degraded lands, and sparsely 
covered forests should be afforested or rehabili-
tated using native tree species, preferably coni-
fers. In Olur Forest Enterprise, priority should 
be given to degraded lands with a sandy texture 
since they are most prone to soil erosion. Pro-
moting Astragalus species as a shrub layer may 
be a smart choice.

	III.	 Regeneration activities should be performed at 
small sites without clear cutting. Regenerated 
sites should be monitored in the first few years 
until the seedlings fully cover the soil. If any 
erosion hazard is observed at these sites, conser-
vation measures such as terracing, fencing, and 
replacement planting must be urgently taken by 
field foresters.
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