• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Artvin
  • Fakülteler
  • Mühendislik Fakültesi
  • Elektrik - Elektronik Mühendisliği Bölümü
  • Elektrik - Elektronik Mühendisliği Bölümü Koleksiyonu - Makaleler
  • View Item
  •   DSpace@Artvin
  • Fakülteler
  • Mühendislik Fakültesi
  • Elektrik - Elektronik Mühendisliği Bölümü
  • Elektrik - Elektronik Mühendisliği Bölümü Koleksiyonu - Makaleler
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep learning base modified MLP model for precise scattering parameter prediction of capacitive feed antenna

Thumbnail

View/Open

nurullah.calik.pdf (2.480Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2020

Author

Çalık, Nurullah
Belen, Mehmet Ali
Mahouti, Peyman

Metadata

Show full item record

Citation

Çalık, N., Belen, M. A., & Mahouti, P. (2020). Deep learning base modified MLP model for precise scattering parameter prediction of capacitive feed antenna. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 33(2), e2682.

Abstract

The relations between the antennas' geometrical parameters and design specifi-cations usually consist of linear and nonlinear components. Especially with theincrease of the requested performance measures, the design procedure becomesmuch more complex due to the conflicting performance criteria or designlimitations. To achieve a design with high performance with feasible designparameters, a fast, accurate, and reliable design optimization process is required.Herein, to have a fast, accurate, and high-performance capacitive-feed antennamodel to be used in design optimization problems, a modified multi-layerperceptron (M2LP) model has been proposed. The M2LP is an equivalent con-volutional neural network (CNN) model of a standard multilayer perceptron(MLP), where instead of traditional training parameters of MLP, more advancedtraining parameters of CNN models such as batch-norm layer, leaky-rectifiedlinear unit (ReLU) layer, and Adam training algorithm had been used. Further-more, the M2LP model had been used in a design optimization process and theobtained optimal antenna had been prototyped using 3D printing technology forjustification of the proposed M2LP model with experimental results. As can beseen from the results, the proposed M2LP model is a fast, accurate, and reliableregression model for design optimization of microwave antennas.

Source

International Journal Of Numerical Modelling-Electronic Networks Devices And Fields

Volume

33

Issue

2

URI

https://hdl.handle.net/11494/2114

Collections

  • Elektrik - Elektronik Mühendisliği Bölümü Koleksiyonu - Makaleler [36]
  • Scopus İndeksli Yayınlar Koleksiyonu [536]
  • WoS İndeksli Yayınlar Koleksiyonu [700]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsInstitution AuthorORCIDTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeThis CollectionBy Issue DateAuthorsInstitution AuthorORCIDTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess Type

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || Artvin Çoruh University || OAI-PMH ||

Artvin Çoruh University, Artvin, Turkey
If you find any errors in content, please contact:

Creative Commons License
Artvin Çoruh University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Artvin:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.