• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Artvin
  • Fakülteler
  • Mühendislik Fakültesi
  • Elektrik - Elektronik Mühendisliği Bölümü
  • Elektrik - Elektronik Mühendisliği Bölümü Koleksiyonu - Makaleler
  • View Item
  •   DSpace@Artvin
  • Fakülteler
  • Mühendislik Fakültesi
  • Elektrik - Elektronik Mühendisliği Bölümü
  • Elektrik - Elektronik Mühendisliği Bölümü Koleksiyonu - Makaleler
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Symbolic regression for derivation of an accurate analytical formulation using "big data": an application example

Thumbnail

View/Open

peyman_mahouti.pdf (924.6Kb)

Access

info:eu-repo/semantics/closedAccess

Date

2017

Author

Mahouti, Peyman
Güneş, Filiz
Belen, Mehmet Ali
Demirel, Salih

Metadata

Show full item record

Citation

Mahouti, P., Güneş, F., Belen, M. A., & Demirel, S. (2017). Symbolic Regression for Derivation of an Accurate Analytical Formulation using “Big Data” An Application Example. Applied Computational Electromagnetics Society Journal, 32(5), 372-380.

Abstract

With emerging of the Big Data era, sample datasets are becoming increasingly large. One of the recently proposed algorithms for Big Data applications is Symbolic Regression (SR). SR is a type of regression analysis that performs a search within mathematical expression domain to generate an analytical expression that fits large size dataset. SR is capable of finding intrinsic relationships within the dataset to obtain an accurate model. Herein, for the first time in literature, SR is applied to derivate a full-wave simulation based analytical expression for the characteristic impedance Z(0) of microstrip lines using Big Data obtained from an 3D-EM simulator, in terms of only its real parameters which are substrate dielectric constant a, height h and strip width w within 1-10 GHz band. The obtained expression is compared with the targeted simulation data together with the other analytical counterpart expressions of Z(0) for different types of error function. It can be concluded that SR is a suitable algorithm for obtaining accurate analytical expressions where the size of the available data is large and the interrelations within the data are highly complex, to be used in Electromagnetic analysis and designs.

Source

Applied Computational Electromagnetics Society Journal

Volume

32

Issue

5

URI

https://hdl.handle.net/11494/2915

Collections

  • Elektrik - Elektronik Mühendisliği Bölümü Koleksiyonu - Makaleler [36]
  • Scopus İndeksli Yayınlar Koleksiyonu [536]
  • WoS İndeksli Yayınlar Koleksiyonu [700]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsInstitution AuthorORCIDTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeThis CollectionBy Issue DateAuthorsInstitution AuthorORCIDTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess Type

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || Artvin Çoruh University || OAI-PMH ||

Artvin Çoruh University, Artvin, Turkey
If you find any errors in content, please contact:

Creative Commons License
Artvin Çoruh University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Artvin:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.