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Abstract: Secondary sulfonamides (4a–8h) incorporating acetoxybenzamide, triacetoxybenzamide,
hydroxybenzamide, and trihydroxybenzamide and possessing thiazole, pyrimidine, pyridine,
isoxazole and thiadiazole groups were synthesized. Lactoperoxidase (LPO, E.C.1.11.1.7), as a natural
antibacterial agent, is a peroxidase enzyme secreted from salivary, mammary, and other mucosal
glands. In the present study, the in vitro inhibitory effects of some secondary sulfonamide derivatives
(4a–8h) were examined against LPO. The obtained results reveal that secondary sulfonamide
derivatives (4a–8h) are effective LPO inhibitors. The Ki values of secondary sulfonamide derivatives
(4a–8h) were found in the range of 1.096 × 10−3 to 1203.83 µM against LPO. However, the most
effective inhibition was found for N-(sulfathiazole)-3,4,5-triacetoxybenzamide (6a), with Ki values of
1.096 × 10−3 ± 0.471 × 10−3 µM as non-competitive inhibition.

Keywords: lactoperoxidase; secondary sulfonamide; enzyme purification; enzyme inhibition

1. Introduction

Sulfonamides constitute a privileged class among pharmacological agents by possessing
properties including carbonic anhydrase enzyme (CA) inhibition, as well as diuretic, hypoglycemic,
anticancer, antibacterial, antiviral, and metalloprotease inhibitory effects. Although many years passed
since their first discovery in the 1930s as a chemotherapeutic agent for antibacterial properties they
are receiving increasing attention due to their newly-discovered pharmacological properties [1–5].
Due to the belief that sulfonamides must be be primary sulfonamides to exhibit those pharmacological
properties, secondary sulfonamides are more investigated from the synthetic view and have found
less pharmacological applications. However, recent investigations shown that secondary sulfonamides
have a great potential not only for their selective inhibition characteristics on CA isozymes [6–8]
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but also for their good inhibition properties over cancer-related CA isoenzymes [9], for anticandidal
properties [10] and also for their glutamate carboxypeptidase II inhibition properties [11].

It was also reported that sulfonamides had a number of interesting functionalities. Some example
can be given for secondary and tertiary and sulfonylureas represent particularly important structural
motifs in several classes of drugs. Sulfonamides possessed some biological activities as antibiotics
(sulfhamethoxazole), PDE5 inhibitors for the treatment of erectile dysfunction (sildenafil), protease
inhibitor for treatment of HIV (darunavir), sulfonylureas for treatment of diabetes mellitus
(glibenclamide), hepatitis C anti-viral RNA polymerase inhibitors, and non-steroidal anti-inflammatory
COX-2 inhibitors (oxicam class) [12].

Because secondary sulfonamides have been reported to be effective agents, in this study, new designs
of secondary sulfonamide drugs containing thiazole, pyrimidine, pyridine, isoxazole and thiadiazole
moieties were utilized to obtain acetoxybenzamide, triacetoxybenzamide, hydroxybenzamide and
trihydroxybenzamide sulfonamide derivatives to achieve the synergistic effects of sulfonamides and
polyphenols in one molecule. Since acetyl protection of hydroxyl groups is a well-known application in
pharmacology to enhance oral bioavailability and to increase therapeutic concentration of the drug in
the bloodstream, both acetylated and non-acetylated forms of compounds were examined together.

Milk contains a variety of constituents that protect the neonate and the milk itself from a host
of deleterious microorganisms. One of the constituents is the lactoperoxidase (LPO) system [13–15].
This system is a naturally-occurring antimicrobial system [16–18] which is inherently available in raw
milk and human body fluids such as saliva. There are three primary components in the LPO system:
haeme-containing LPO, hydrogen peroxide (H2O2), and thiocyanate (SCN−). H2O2 is produced by
a number of microorganisms such as lactobacilli, Lactococcus and streptococci through enzymatic
oxidation of some biomolecules including ascorbic acid and glucose [19–21]. Additionally, LPO is
released from mucosal glands and can be found in secretions like saliva, milk or tears. The potential of
LPO to inhibit bacterial growth in milk has been recognized [22,23]. LPO catalyses the H2O2-dependent
oxidation of thiocyanate (SCN−) to hypothiocyanite (OSCN−). The latter ion is a potent antimicrobial
agent against gram-negative and gram-positive bacteria, fungi, and viruses [16,24]. This reaction makes
the LPO system potentially useful in improving food safety [16,25]. LPO has crucial applications
in various fields. For example, LPO protects the intestinal tract system of newborn infants against
pathogenic microorganisms by catalysing halides and pseudohalides. LPO is one of the important
proteins in bovine whey, and it has been known to play a key role in protection of the lactating
mammary gland and the intestinal tract of newborn infants against pathogenic microorganisms [26–28].

The aim of the present study was to assess the inhibition effects of a new class of secondary
sulfonamides against LPO enzyme, one of the prominent enzymes generally found in several sources,
such as bovine milk, saliva, and tears.

2. Materials and Methods

2.1. Chemicals and Materials

Fresh bovine milk was obtained from the local dairy. L-Tyrosine, Amberlite CG-50-NH4
+ resin,

CNBr-activated-Sepharose 4B, protein assay reagent sulfanilamide, and chemicals for electrophoresis
were purchased from Sigma-Aldrich Co. (Sigma-Aldrich Chemie GmbH Export Department
Eschenstrasse 5, 82024 Taufkirchen, Germany).

2.2. General Procedure for Sulfonamide Derivatives

Secondary sulfonamides were synthesized using naturally available 4-hydroxy and
3,4,5-trihydroxy benzoic acids (gallic acid) in various plants and fruits, which were reacted with acetic
anhydride to obtain 4-acetoxy and 3,4,5-triacetoxy benzoic acids for the protection of hydroxyl groups.
Then, they were converted to their corresponding chloride derivatives by treating with thionyl chloride
to produce benzoyl chlorides, which underwent reactions with secondary sulfonamides having
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thiazole, pyrimidine, pyridine, isoxazole and thiadiazole groups to obtain secondary sulfonamide
derivatives of acetoxybenzamides and triacetoxybenzamides as one part of target compounds.
Deacetylation under acidic conditions gave the other part of our targeted sulfonamide derivatives [28].
The reaction scheme is given in Figure 1.
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Figure 1. The synthesis route of targeted secondary sulfonamide derivatives (1a–8h).

2.3. Biochemical Assays

LPO activities were determined by the procedure of Shindler and Bardsley [29] with
slight modification [30,31]. This method is based on the oxidation of chromogenic substrate
2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) by hydrogen peroxide (H2O2), which
results in a product which had absorbance at 412 nm [32].

The affinity matrix was synthesised by coupling sulfanilamide as the ligand and L-tyrosine as
the spacer arm to CNBr-activated-Sepharose 4B, following the previously published procedure [22]
with a slight modification [33,34]. The protein flow in the column eluates was spectrophotometrically
determined at 280 nm [35]. All purification steps were performed at 4 ◦C. The protein quantity was
determined at 595 nm according to the Bradford method [36]. Bovine serum albumin was used as the
standard protein [37–39]. For determination of LPO purity, sodium dodecyl sulphate-polyacrylamide
gel electrophoresis (SDS-PAGE) was used according to the procedure of Laemmli [40]. In this
application, the imaging method was performed in 10% and 3% acrylamide for the running and
the stacking gel, respectively, with 0.1% SDS [41–43].

The effects of secondary sulfonamide derivatives (4a–8h) on LPO purified from fresh bovine milk
by affinity chromatography technique were previously determined [22]. In our study, LPO activity was
measured in the presence of different concentrations of secondary sulfanilamide derivatives (4a–8h).
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A control sample without secondary sulfonamide was taken as 100%. An activity (%)-[Secondary
sulfonamide] plot was drawn. For the determination of the inhibition constant (Ki) values, three
different secondary sulfonamide derivative (4a–8h) concentrations were used. Additionally, ABTS
was used as a substrate at five different concentrations. Lineweaver–Burk plots (1/V-1/[ABTS])
were obtained for secondary sulfonamide; the Ki and the inhibition type were calculated from these
plots [44]. The data obtained were analysed by t-test and the results are given as Means ± SD.

3. Results and Discussion

Enzymes are biological macromolecules that accelerate or catalyse chemical reactions in biological
systems [45,46]. At low concentrations, some chemicals and drugs alter normal enzyme activities
by specific enzyme inhibitions [47,48]. On the other hand, sulfonamide derivative drugs were the
first systemically used antibiotics and paved the way for the antibiotic revolution in medicine. They
were also largely investigated by means of physiological, kinetic, and pharmacological studies [49–51].
In addition, these molecules are the most important and largely used zinc binding function for the
design of CA isoenzymes inhibitors. It was highlighted that the sulfonamide groups are an ideal ligand
for some enzyme active site [52,53].

Although sulfonamide derivatives are used in therapies, there has been no reported LPO activity
for these synthesized compounds (4a–8h). As show in Table 1, LPO was separately purified from
bovine milk by Sepharose 4B-L-tyrosine-sulfonamide affinity chromatography technique. The LPO
was purified 407.0-fold with a specific activity of 24.45 EU/mg and overall yield of 75.6% (Table 1).
The purification of LPO after Sepharose 4B-L-tyrosine-sulfonamide-affinity chromatography was
controlled by SDS-PAGE and a single band was observed for LPO (Figure 2). For secondary
sulfonamides (4a–8h), the inhibitor concentrations causing up to 50% inhibition (IC50 values) were
determined from the regression analysis graphs. IC50 values obtained for LPO are shown in Table 2.
From in vitro studies, it was understood that LPO was effectively inhibited by these secondary
sulfonamide derivatives (4a–8h). The inhibition of LPO-catalysed iodination has sometimes been
used for designing new antithyroid agents [45]. To understand the nature of LPO inhibition, kinetic
experiments with different concentrations of secondary sulfonamides (4a–8h), varying the respective
concentrations of the substrates ABTS for each concentration of the sulfonamide derivatives (4a–8h)
were performed. The Lineweaver–Burk plots were obtained by plotting 1/v versus 1/[ABTS], which
showed parallel lines for different concentrations of secondary sulfonamide derivatives (4a–8h).
The lines do not intersect at a common point as shown in Table 2, indicating that secondary sulfonamide
derivatives (4a–8h) inhibition effects against LPO are commonly non-competitive with respect to the
ABTS substrates. In this assay, it was suggested that the secondary sulfonamides (4a–8h) do not
directly react with LPO. However, any variation in the concentration of ABTS does not affect the
reactivity of secondary sulfonamides (4a–8h). This is also reflected in the non-competitive nature of
the inhibition by the compounds with respect to ABTS. The inhibition data of secondary sulfonamides
(4a–8h) reported here are summarized in Table 2, and the following comments can be drawn from
these data. Additionally, LPO inhibition by sulfonamide derivatives (4a–8h) is dependent on the
positioning of the inhibitor in the active site; i.e., the distance between the atoms in the secondary
sulfonamide derivatives (4a–8h) and active site amino acids.

Table 1. Purification of lactoperoxidase (LPO) from bovine milk by Sepharose 4B-L-tyrosine-
sulfonamide affinity chromatography.

Purification Steps
Total

Volume
(mL)

Enzyme
Activity
(EU/mL)

Total Enzyme
Activity

(EU/mL·min)

Protein
(mg/mL)

Total
Protein

(mg)

Specific
Activity
(EU/mg)

Yield
(%)

Purification
Fold

Homogenate 60.0 1.0 60.0 15.0 900.0 0.06 100 1.00
Sepharose

4B-L-tyrosine-sulfonamide 10.0 4.5 45.0 0.184 1.84 24.45 75.6 407.0
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Figure 2. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) band of LPO.
Columns a, b and c are purified LPO from bovine milk by affinity column chromatography. Column d
is standard proteins (Line 1: 250 kDa, Line 2: 150 kDa, Line 3: 100 kDa, Line 4: 70 kDa, Line 5: 50 kDa,
Line 6: 40 kDa, Line 7: 30 kDa, Line 8: 20 kDa).

Table 2. The inhibition types, IC50 and Ki values of some secondary sulfonamide derivatives (4a–8h)
on LPO purified from bovine milk.

No. Compound Names IC50 (µM) Ki (µM) Inhibition Type

4a Sulfathiazole 231.00 38.43 ± 6.06 Non-competitive
4b Sulfadiazine 92.24 90.66 ± 2.52 Non-competitive
4c Sulfamethazine 346.50 198.00 ± 24.46 Non-competitive
4d Sulfapyridine 227.00 65.00 ± 3.61 Competitive
4e Sulfisoxazole 221.70 182.66 ± 34.07 Non-competitive
4f Sulfamethizole 115.50 21.18 ± 5.66 Non-competitive
4g Sulfamerazine 18.73 20.52 ± 2.14 Non-competitive
4h Sulfanilamide 8.48 35.70 ± 4.88 Competitive
5a N-(sulfathiazole)-p-acetoxybenzamide 99.00 56.06 ± 23.56 Non-competitive
5b N-(sulfadiazine)-p-acetoxybenzamide 0.015 0.026 ± 0.004 Non-competitive
5c N-(sulfamethazine)-p-acetoxybenzamide 0.010 0.008 ± 0.003 Competitive
5d N-(sulfapyridine)-p-acetoxybenzamide 10.04 49.15 ± 19.99 Competitive
5e N-(sulfisoxazole)-p-acetoxybenzamide 3.03 0.934 ± 0.357 Competitive
5f N-(sulfamethizole)-p-acetoxybenzamide 0.238 0.324 ± 0.115 Non-competitive
5g N-(sulfamerazine)-p-acetoxybenzamide 3.94 13.39 ± 6.19 Competitive
5h N-(sulfanilamide)-p-acetoxybenzamide 3.053 2.29 ± 1.02 Non-competitive
6a N-(sulfathiazole)-3,4,5-triacetoxybenzamide 0.656 × 10−3 1.096 × 10−3 ± 0.471 × 10−3 Non-competitive
6b N-(sulfadiazine)-3,4,5-triacetoxybenzamide 13.86 2.90 ± 1.13 Competitive
6c N-(sulfamethazine)-3,4,5-triacetoxybenzamide 138.60 152.03 ± 48.69 Non-competitive
6d N-(sulfapyridine)-3,4,5-triacetoxybenzamide 1.56 1.39 ± 0.15 Non-competitive
6e N-(sulfisoxazole)-3,4,5-triacetoxybenzamide 2.03 1.07 ± 0.02 Competitive
6f N-(sulfamethizole)-3,4,5-triacetoxybenzamide 6.66 8.55 ± 1.45 Non-competitive
6g N-(sulfamerazine)-3,4,5-triacetoxybenzamide 1.28 1.49 ± 0.28 Non-competitive
6h N-(sulfanilamide)-3,4,5-triacetoxybenzamide 3.05 2.29 ± 0.98 Non-competitive
7a N-(sulfathiazole)-p-hydroxybenzamide 15.06 6.85 ± 1.81 Non-competitive
7b N-(sulfadiazine)-p-hydroxybenzamide 0.040 0.044 ± 0.022 Noncompetitive
7c N-(sulfamethazine)-p-hydroxybenzamide 0.426 0.484 ± 0.146 Non-competitive
7d N-(sulfapyridine)-p-hydroxybenzamide 2.96 1.41 ± 0.13 Competitive
7e N-(sulfisoxazole)-p-hydroxybenzamide 10.83 15.08 ± 3.90 Non-competitive
7f N-(sulfamethizole)-p-hydroxybenzamide 0.799 0.387 ± 0.150 Competitive
7g N-(sulfamerazine)-p-hydroxybenzamide 1.759 3.939 ± 1.098 Non-competitive
7h N-(sulfanilamide)-p-hydroxybenzamide 0.285 0.217 ± 0.099 Non-competitive
8a N-(sulfathiazole)-3,4,5-trihydroxybenzamide 0.014 0.025 ± 0.010 Competitive
8b N-(sulfadiazine)-3,4,5-trihydroxybenzamide 0.715 1.292 ± 0.465 Non-competitive
8c N-(sulfamethazine)-3,4,5-trihydroxybenzamide 2.53 2.17 ± 0.88 Competitive
8d N-(sulfapyridine)-3,4,5-trihydroxybenzamide 10.19 5.85 ± 1.28 Competitive
8e N-(sulfisoxazole)-3,4,5-trihydroxybenzamide 1.99 1.44 ± 0.52 Competitive
8f N-(sulfamethizole)-3,4,5-trihydroxybenzamide 173.25 292.78 ± 61.96 Non-competitive
8g N-(sulfamerazine)-3,4,5-trihydroxybenzamide 1.484 3.87 ± 0.43 Non-competitive
8h N-(sulfanilamide)-3,4,5-trihydroxybenzamide 1.782 3.104 ± 0.578 Non-competitive
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All synthesized secondary sulfonamides derivatives (4a–8h) exhibited effective inhibitory
activity against LPO, one of the prominent enzymes in milk, with a Ki values in the range
of 1.096 × 10−3 ± 0.471 × 10−3–1203.83 ± 616.78 µM (Table 2). Additionally, N-(sulfathiazole)-
3,4,5-triacetoxybenzamide (6a) demonstrated the most powerful LPO inhibition effect with
low nanomolar Ki value (1.096 nM). On the other hand, among the synthesized secondary
sulfonamides (4a–8h) N-(sulfadiazine)-p-acetoxy-benzamide (5b, 260 nM), N-(sulfamethazine)-p-
acetoxybenzamide (5c, 80 nM), N-(sulfisoxazole) p-acetoxybenzamide (5e, 934 nM), N-(sulfamethizole)-
p-acetoxybenzamide (5f, 324 nM), N-(sulfanilamide)-p-hydroxybenzamide (7h, 217 nM) and
N-(sulfathiazole)-3,4,5-trihydroxybenzamide (8a, 25 nM), showed effective inhibition profiles against
bovine milk LPO. Additionally, in general, the acetylated sulfonamides are better inhibitors than
the non-acetylated sulfonamides, although the acetylated acids are poorer inhibitors than the
non-acetylated acids.

4. Conclusions

Secondary sulfonamides incorporating acetoxybenzamide, triacetoxybenzamide, hydroxybenzamide
and trihydroxybenzamide–all possessing thiazole, pyrimidine, pyridine, isoxazole and thiadiazole
groups–were synthesized, and biological activities were evaluated. Milk is a vital liquid secreted from
the mammary glands of females of all mammal species. So, the inhibition of the LPO is very important
in terms of the LPO system, which catalyses the oxidation of several different reactions by H2O2 of
a large range of substrates, such as the oxidation of endogenous thiocyanate (SCN−) to the antibacterial
hypothiocyanite (OSCN−). Secondary sulfonamides (4a–8h) have shown micromolar to nanomolar
inhibition against LPO that is vital activity for the innate immune system because of removing bacteria
from milk and mucosal secretions. If LPO activity is reduced, this means that the immune system is
weakened. This is particularly undesirable, since this affects the immune system of infants that used
sulfonamides as a drug.
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activities of sulfonamide derivatives of dopamine related compounds. Arch. Pharm. 2013, 346, 783–792.
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