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POSITIVE SOLUTIONS FOR TWO-POINT CONFORMABLE

FRACTIONAL DIFFERENTIAL EQUATIONS BY MONOTONE

ITERATIVE SCHEME

ŞUAYIP TOPRAKSEVEN, §

Abstract. In this paper, two successively iterative schemes have been provided to show
the existence of nontrivial solutions for nonlinear conformable fractional differential equa-
tion involving nonlocal boundary condition and a parameter. The iterative sequences
begin with some constant. The fractional derivative in this study is based on the newly
defined and so called ”conformable fractional derivative”. The corresponding Green’s
function that is singular at zero has been derived. Because of this singularity, the fixed
point theorem can not be applied directly, thus a sequence of operators that are com-
pletely continuous is constructed and uniform convergence of these operators to the
underlying operator is shown. Then a fixed point result on the order interval is applied.
Nontrivial solutions of the problem and the positive solutions of the problem that are
the limit of the iterative sequences constructed has been demonstrated.
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1. Introduction

A new and efficient way of modelling of many physical applications can be described by
fractional differential equations. One of the important feature of differential equations is
the theory of fractional differential equation (see [1],[2],[3]). During the time, there have
been many attempt at defining the fractional derivative of a function. Some frequently
used fractional derivatives are the Riemann–Liouville and Caputo fractional derivative.
The Riemann-Lioville fractional derivatives are singular at zero. This leads to unusual
initial conditions for fractional differential equations in the sense of Riemann-Lioville defi-
nition, thus it lacks of physical interpretation. On the other hand, the drawbacks of these
definitions of fractional derivatives are that they do not obey some important rules of the
classical calculus such as semi-group and commutative property and chain rule. In [4],
a different definition of fractional derivative of a function has been given and it is called
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of Mathematics, 2021; all rights reserved.

289



290 TWMS J. APP. AND ENG. MATH. V.11, N.1, 2021

”conformable fractional derivative”. This definition agrees with the basic rules of the stan-
dard calculus and has have been further investigated by many authors, see [5] [6]. Several
applications and a physical interpretation of conformable fractional derivative have been
investigated and discussed in [7], [8], [9],[10],[11],[12],[13],[14],[15],[16],[17]. Recently, exis-
tence results for a class of nonlinear fractional differential equations have been extensively
studied by many researcher, see [18],[19],[20],[21],[22],[23], [24],[25],[26], [27], [28], [29] and
references therein. An efficient and important way of investigating nontrivial solutions of
fractional boundary value problems is the monotone iterative method. This method has
been used to prove the existence of the solutions in [18],[19],[20],[21].

In this work, positive solutions for the problem of the conformable differential equations
involving nonlocal conditions at boundary and a parameter is discussed. To the best of
knowledge, there are very little results for nontrivial solutions for boundary value prob-
lems of conformable fractional derivative. The difficulties in these conformable fractional
differential equations arise from that the Green’s function for conformable fractional dif-
ferential equations is not continuous at the starting point. Therefore, one can not apply
the monotone iterative method directly. In [22] and [23], the existence results have been
studied for conformable fractional differential equations. However, their method require
lower and upper solutions for the problem. In this study, a fixed point result is applied on
the ordered interval to find non-zero solutions of the problem by constructing two mono-
tone convergent sequences. The existence of positive solutions also has been proved. In
the construction of monotone iterative schemes, lower and upper solutions are not needed.
These sequences start with constants to approximate the solutions.

Consider the following nonlinear conformable fractional differential equation
Tα0 x(t) + f(t, x(t)) = 0

x(k)(0) = 0, k = 0, 1, 2,

x(1) = a
∫ 1

0 x(η)dη

(1)

where α ∈ (3, 4] and 0 < a ≤ 3 and Tα0 is the conformable derivative defined by
Definition 2.1 below.

2. Preliminaries and Green’s Function

In this section, some definitions, lemmas and conformable fractional calculus that are
needed in the paper and Green’s function associated with the problem (1) are introduced.
In the sequel, C[0, 1] denotes the space of continuous functions on the interval [0, 1].

Definition 2.1. [4] For a function x : [0,∞) 7→ R, the conformable fractional derivative
of order α ∈ (0, 1] is given as

(Tα0 x)(t) = limh→0
x(t+ h(t− a)1−α)− x(t)

h

provided the limit exist. If this limit exist, we say that f has conformable differentiable. If
limt→0 T

α
0 x(t) exist, then Tα0 x(0) is defined and is equal to this limit.

Definition 2.2. [4] The conformable fractional derivative of a function x : [0,∞) 7→ R of
order α ∈ (n, n+ 1] is defined as

(Tα0 x)(t) = (T β0 x
(n))(t)

where β = α− n and x(n)(x) exits.
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Definition 2.3. [4] Let α ∈ (n, n+ 1] for n ∈ N. Then the conformable fractional integral
of a function x : [0,∞) 7→ R is given as

(Iα0 x)(t) =
1

n!

∫ t

0
(t− s)n(s− 0)α−n−1x(s) ds.

Lemma 2.1. [4] If Tα0 x ∈ C[0, 1] and

Tα0 x(t) = 0, α ∈ (n, n+ 1],

then one has
x(t) = c0 + c1t+ c2t

2 + · · ·+ cnt
n, ci ∈ R.

Lemma 2.2. [4] If x ∈ C[0, 1], then one has

(Tα0 Iα0 x)(t) = x(t), α > 0 for t > 0.

Lemma 2.1 and Lemma 2.2 lead to

Lemma 2.3. If x ∈ C[0, 1] and Tα0 x ∈ C[0, 1] ∩ L1(0, 1), then

Iα0 T
α
0 x(t) = x(t) + c0 + c1t+ c2t

2 + · · ·+ cnt
n, ci ∈ R,

where n is the largest integer less than α.

A nonempty closed and convex subset P of a Banach space X is called a cone if the
following are true: (1) for any nonnegative µ, µP ⊂ P ; (2) P ∩ (−P ) = {0}. The cone P
is normal if there is a µ > 0 so that

‖g + h‖ ≥ µ, ∀g, h ∈ P, ‖g‖ = ‖h‖ = 1.

For any x1, x2y ∈ X, define the order interval [x1, x2y] by

[x1, x2y] = (x1 + P ) ∩ (y + P ) = {z ∈ X : x ≤ z ≤ y}.
Here, x ≤ y means that y − x ∈ P . Clearly, [x, y] is a convex set. Observe that in a
Banach space ordered by cone, one has

0 ≤ xn, xn → x implies 0 ≤ x.
Consequently,

xn ≤ yn, xn → x, yn → y implies x ≤ y.
If T : X → X is a continuous map, then T is said to be monotone when u ≥ v implies

T (u) ≥ T (v).

Lemma 2.4. [30] Let Y be a Banach space ordered by a normal cone P ⊂ Y . Assume that
T : [w, z]→ Y is completely continuous and monotone operator such that w ≤ Tw, z ≥ Tz.
Then T has a minimal and a maximal fixed points w∗, w

∗, respectively, so that w ≤ w∗ ≤
w∗ ≤ z. Moreover, w∗ = limn→∞ T

nw,w∗ = limn→∞ T
nz.

Lemma 2.5. [31] Let Y be a Banach space and T : Y → Y be an operator. If Tn : Y → Y
for n = 1, 2, . . . are completely continuous operators and Tn converges uniformly to T (so
that ‖Tn − T‖ → 0 as n→∞), then T is also a completely continuous operator.

Now, an equivalent integral equation for the boundary value problem of the fractional
differential equation (1) will be presented by the help of the associated Green’s function.
Unlike the fractional boundary value problem (FBVP) in the sense of Rieman-Lioville or
Caputo, the Green’s function for conformable fractional differential equations is singular
and this singularity makes the problem challenging.
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Lemma 2.6. Given h ∈ C[0, 1] ∩ L1(0, 1), α ∈ (3, 4], the linear FBVP
Tα0 x(t) + h(t) = 0,

x(k)(0) = 0, k = 0, 1, 2,

x(1) = a
∫ 1

0 x(η)dη,

(2)

is equivalent to the following integral equation

x(t) =

∫ 1

0
G(t, η)h(η)dη,

where the Green’s function is given as

G(t, η) =
ηα−4

24p(0)

{
4t3(1− η)3 − at3(1− η)4 − 4p(0)(t− η)3, 0 < η ≤ t ≤ 1,
4t3(1− η)3 − at3(1− η)4, 0 ≤ t ≤ η ≤ 1,

(3)

where 0 < a ≤ 3 and p(η) = 1 −
a

4
(1 − η). Note that, G(t, η) is smooth on [0, 1] × (0, 1]

and singular at η = 0.

Proof. Applying the conformable integral operator Iα0 to the both side of the problem (2)
and using Lemma 2.3, an equivalent integral equation can be found as

x(t) = −Iα0 h(t) + c0 + c1t+ c2t
2 + c3t

3

for some constants c0, c1, c2, c3. As a result, the solution of the problem (2) is

x(t) = −1

6

∫ t

0
(t− η)3ηα−4h(η)dη + c0 + c1t+ c2t

2 + c3t
3.

We have c0 = c1 = c2 = 0 by the boundary conditions u(0) = u′(0) = u′′(0) = 0. Moreover,
one gets

x(1) = c3 −
1

6

∫ 1

0
(1− η)3ηα−4h(η)dη. (4)

Additionally, we compute∫ 1

0
x(η)dη = −1

6

∫ 1

0

∫ t

0
(t− η)3ηα−4h(η)dηdt+ c3

∫ 1

0
η3dη

= −1

6

∫ 1

0

∫ 1

η
(t− η)3ηα−4h(η)dtdη + c3

∫ 1

0
η3dη

= − 1

24

∫ 1

0
(1− η)4ηα−4h(η)dη +

c3

4
(5)

Form (4) and (5), one obtains

c3 =
1

24p(0)

∫ 1

0

(
4(1− η)3ηα−4 − a(1− η)4

)
ηα−4h(η)dη.

Thus, the problem (2) has a unique solution:

x(t) = −1

6

∫ t

0
(t− η)3ηα−4h(η)dη +

1

24p(0)

∫ 1

0
t3
(

4(1− η)3ηα−4 − a(1− η)4
)
ηα−4h(η)dη.

Equivalently, the solution can be written as
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x(t) = −1

6

∫ t

0
(t− η)3ηα−4h(η)dη +

1

24p(0)

∫ t

0
t3
(

4(1− η)3ηα−4 − a(1− η)4
)
ηα−4h(η)dη

+
1

24p(0)

∫ 1

t
t3
(

4(1− η)3ηα−4 − a(1− η)4
)
ηα−4h(η)dη

=
1

24p(0)

[∫ t

0

(
4t3(1− η)3 − at3(1− η)4 − 4p(0)(t− η)3

)
ηα−4h(η)dη

+

∫ 1

t

(
4t3(1− η)3 − at3(1− η)4

)
ηα−4h(η)dη

]
Thus, the desired result is proved. �

Next, some important properties of the Green’s function G(t, η) that will be used in
this paper will be given in the following lemma.

Lemma 2.7.

(A1) G(t, η) ≥
a

6(4− a)
t3(1− η)3ηα−3, ∀t, η ∈ [0, 1], (6)

(A2) G(t, η) ≤

[
1

2
+

a

6(4− a)

]
t3(1− η)3ηα−4, ∀t, η ∈ (0, 1], (7)

(A3) G(t, η) ≤

[
1

2
+

a

6(4− a)

]
(1− η)3ηα−3, ∀t, η ∈ (0, 1], (8)

(A4) G(t, η) > 0, ∀t, η ∈ (0, 1). (9)

Proof. If η 6 t, one obtains

G(t, η) =
1

24p(0)
ηα−4

[
4t3(1− η)3 − at3(1− η)4 − 4p(0)(t− η)3

]

=
1

24p(0)
ηα−4

[
4t3(1− η)3

{
1−

a

4
(1− η)

}
− 4p(0)(t− η)3

]

=
1

24p(0)
ηα−4

[
4t3(1− η)3p(η)− 4p(0)(t− η)3

]

= ηα−4

{
1

24

[
4t3(1− η)3 − 4(t− η)3

]
+
p(η)− p(0)

24p(0)
4t3(1− η)3

}

≥ ηα−4

{
1

24

[
4t3(1− η)3η(1− t)

]
+
η(1− p(0))

24p(0)
4t3(1− η)3

}

≥ ηα−4 1− p(0)

24p(0)
4t3η(1− η)3

=
a

6(4− a)
t3(1− η)3ηα−3,
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which proves (A1) when η 6 t.

G(t, η) =
1

24p(0)
ηα−4

[
4t3(1− η)3 − at3(1− η)4 − 4p(0)(t− η)3

]

=
1

24p(0)
ηα−4

[(
1−

a

4
+
a

4

)
4t3(1− η)3 − at3(1− η)4 − 4p(0)(t− η)3

]

≤ 1

24p(0)
ηα−4

[
12p(0)

∫ t(1−η)

t−η
s2ds+ at3(1− η)3(1− (1− η))

]

≤ 1

24p(0)
ηα−4

[
12p(0)t2(1− η)2η(1− t) + at3(1− η)3

]

=
(1

2
+

a

6(4− a)

)
t3(1− η)3ηα−4,

which proves (A2) η 6 t

G(t, η) =
1

24p(0)
ηα−4

[
4t3(1− η)3 − at3(1− η)4 − 4p(0)(t− η)3

]

=
1

24p(0)
ηα−4

[(
1−

a

4
+
a

4

)
4t3(1− η)3 − at3(1− η)4 − 4p(0)(t− η)3

]

≤ 1

24p(0)
ηα−4

[
12p(0)

∫ t(1−η)

t−η
s2ds+ at3(1− η)3(1− (1− η))

]

≤ 1

24p(0)
ηα−4

[
12p(0)t2(1− η)2η(1− t) + aη(1− η)3

]

=
(1

2
+

a

6(4− a)

)
(1− η)3ηα−3,

which proves (A3) when η 6 t.
If t ≤ η, one has

G(t, η) =
1

24p(0)
ηα−4

[
4t3(1− η)3 − at3(1− η)4

]

=
1

24p(0)
ηα−44t3(1− η)3

[
1−

a

4
(1− η)

]
=
p(0) + p(η)− p(0)

24p(0)
ηα−44t3(1− η)3

= ηα−4
(1

6
t3(1− η)3 +

p(η)− p(0)

6p(0)
t3(1− η)3

)
≥

a

6(4− a)
t3(1− η)3ηα−3,
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which proves (A1) when t ≤ η.

G(t, η) =
1

24p(0)
ηα−4

[
4t3(1− η)3 − at3(1− η)4

]

≤ 1

6p(0)
ηα−4t3(1− η)3 ≤

[
1

2
+

a

6(4− a)

]
t3(1− η)3ηα−4,

which proves (A2) when t ≤ η.

G(t, η) =
1

24p(0)
ηα−4

[
4t3(1− η)3 − at3(1− η)4

]

≤ 1

6p(0)
ηα−4t3(1− η)3 ≤

[
1

2
+

a

6(4− a)

]
(1− η)3ηα−3,

which proves (A3) when t ≤ η.
Therefore, the proof is completed. �

The Green’s function satisfies the following bounds.

Lemma 2.8. The following inequalities hold for the Green’s function G(t, η) defined by
(3).

σ1(η)t3 ≤ G(t, η) ≤ σ2(η)t3, t, η ∈ (0, 1],

where σ1(η) =
a

6(4− a)
(1− η)3ηα−3 and σ2(η) =

[
1

2
+

a

6(4− a)

]
(1− η)3ηα−4.

Lemma 2.9. The function G(t, η) defined by (3) is continuous on [0, 1]×(0, 1] and satisfies∣∣∣G(t2, η)−G(t1, η)
∣∣∣ ≤ ηα−4(t2 − t1), 0 ≤ t1 ≤ t2 ≤ 1.

Proof. If 0 ≤ t1 ≤ t2 ≤ 1, then one obtains∣∣∣G(t2, η)−G(t1, η)
∣∣∣ ≤ ηα−4

24p(0)

(∣∣∣(t32 − t31)
[
4(1− η)3 − a(1− η)4

]∣∣∣
+
∣∣∣4p(0)

(
(t2 − η)3 − (t1 − η)3

)∣∣∣).
Let g(η) := 4(1−η)3−a(1−η)4. Observe that g′(η) = 4a(1−η)3−12(1−η)2 ≤ 0 for η ∈
[0, 1]. Thus, the function g(η) is decreasing and maxη∈[0,1] g(η) = 4−a = 4p(0). Moreover,

by the help of the mean value theorem one has (t2 − η)3 − (t1 − η)3 < 3(t2 − t1) and
t32 − t31 < 3(t2 − t1). Thus, the desired result follows∣∣∣G(t2, η)−G(t1, η)

∣∣∣ ≤ ηα−4(t2 − t1). (10)

�

3. Existence of the Solutions

Consider the Banach space C[0, 1] equipped with the maximum norm, ‖z‖ = max0≤t≤1 |z(t)|.
Let a closed cone P ⊂ X be defined by

P = {z ∈ C[0, 1] : w(t) ≥ 0, 0 ≤ t ≤ 1}.
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Clearly, P is the normal cone of non-negative functions in C[0, 1]. Define a partial order
in this space as follows:

z1, z2 ∈ C[0, 1], z1 ≤ z2 ⇐⇒ z1(t) ≤ z2(t) for t ∈ [0, 1].

Next, the existence results and two iterative schemes for the nonlinear fractional BVP
(2) will be given. Given the continuous function f : [0, 1] × [0,∞) → R, the following
operators are introduced.

(Tnx)(t) :=

∫ 1

1
n+1

G(t, η)f
(
η, x(η)

)
dη, n = 1, 2, . . . , (11)

(Tx)(t) :=

∫ 1

0
G(t, η)f

(
η, x(η)

)
dη. (12)

Since G(t, η) is not continuous at η = 0, the standard argument can not be applied to show
that the operator T is completely continuous. Thus, first the operators Tn will be shown
to be completely continuous. Then, complete continuity of T follows from Lemma 2.5.

From now on, the assumption below is supposed to be held true.

(A1) f ∈ C([0, 1] × [0,∞)) and for x ∈ [x0, y0] in C[0, 1], there exits a positive
constant M so that

max
0≤t≤1,x0≤x≤y0

|f(t, x)| = M.

Lemma 3.1. Assume that (A1) holds. Then the operators Tn defined by (11) and the
operator T defined by (12) are completely continuous operators.

Proof. Let [x0, y0] be the order interval in C[0, 1]. For u ∈ [x0, y0], the operators Tn are
continuous in view of the continuity of f(t, x) and G(t, η) on the set [0, 1] × ( 1

1+n , 1] for

each n ∈ N. It is proved that Tn : [x0, y0] → C[0, 1] is completely continuous. First, the
uniform boundedness of Tn([x0, y0]) in C[0, 1] will be shown. The assumption (A1) implies
that there is a positive constant M so that |f(t, x)| ≤ M, t ∈ [0, 1]. Using Lemma 2.8,
it follows that, for x ∈ [x0, y0]

‖Tnu‖ = max
0≤t≤1

∫ 1

1
n+1

G(t, η)
∣∣∣f(η, u(η))

∣∣∣dη ≤ ∫ 1

1
n+1

σ2(η)
∣∣∣f(η, u(η))

∣∣∣dη
≤M

[
1

2
+

a

6(4− a)

]∫ 1

1
n+1

(1− η)3ηα−4dη ≤M

[
1

2
+

a

6(4− a)

]∫ 1

1
n+1

ηα−4dη

= M

[
1

2
+

a

6(4− a)

]
1

α− 3
.

On the other hand, for any u ∈ [x0, y0] and 0 < t1 ≤ t2 ≤ 1/n, by using Lemma 2.9 and
the assumption (A1), one has∣∣∣(Tnu)(t2)− (Tnu)(t1)

∣∣∣ ≤ ∫ 1

1
n+1

∣∣∣G(t2, η)−G(t1, η)
∣∣∣|f(η, u(η))|dη

≤M
∫ 1

1
n+1

ηα−4dη

≤M(t2 − t1)
1

α− 3
.
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For u ∈ [x0, y0] and 0 < t1 ≤ 1
n ≤ t2 ≤ 1, one has

∣∣∣(Tnu)(t2)− (Tnu)(t1)
∣∣∣ ≤ ∫ t2

1
n+1

∣∣∣G(t2, η)−G(t1, η)
∣∣∣|f(η, u(η))|dη

+

∫ 1

t2

∣∣∣G(t2, η)−G(t1, η)
∣∣∣|f(η, u(η))|dη

≤M(t2 − t1)
(∫ t2

1
n+1

ηα−4dη +

∫ 1

t2

ηα−4dη
)

≤M(t2 − t1)
1

α− 3
.

For u ∈ [x0, y0] and 1
n < t1 ≤ t2 ≤ 1, one has

∣∣∣(Tnu)(t2)− (Tnu)(t1)
∣∣∣ ≤ ∫ t1

1
n+1

∣∣∣G(t2, η)−G(t1, η)
∣∣∣|f(η, u(η))|dη

+

∫ t2

t1

∣∣∣G(t2, η)−G(t1, η)
∣∣∣|f(η, u(η))|dη

+

∫ 1

t2

∣∣∣G(t2, η)−G(t1, η)
∣∣∣|f(η, u(η))|dη

≤M(t2 − t1)
(∫ t1

1
n+1

ηα−4dη +

∫ t2

t1

ηα−4dη + +

∫ 1

t2

ηα−4dη
)

≤M(t2 − t1)
1

α− 3
.

Thus, complete continuity of Tn : ([x0, y0]) follows from the Arzela–Ascoli theorem.
It is now shown that Tn([x0, y0]) converges uniformly to T ([x0, y0]) and thus, complete

continuity of T ([x0, y0]) follows from Lemma 2.5. Observe that for x ∈ [x0, y0], using the
assumption (A1) and Lemma 2.8, one has

‖Tnu− Tu‖ = max
0≤t≤1

∣∣∣(Tnu)(t)− (Tu)(t)
∣∣∣ ≤ max

0≤t≤1

∫ 1
n+1

0
G(t, η)

∣∣∣f(η, u(η))
∣∣∣dη

≤M

[
1

2
+

a

6(4− a)

]∫ 1
n+1

0
(1− η)3ηα−4dη

≤M

[
1

2
+

a

6(4− a)

]
1

(n+ 1)α−3α− 3
.

Note that ‖Tnu − Tu‖ → 0 as n → ∞ since α ∈ (3, 4]. This shows that Tn([x0, y0])
converges to T ([x0, y0]) uniformly. �

The existence result and monotone sequences will be given in the next theorem.
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Theorem 3.1. If there are two real numbers c1, c2 with 0 ≤ c1 < c2, and the assumptions
below are met:

(A1′) f ∈ C((0, 1)× [c1, c2]) and f(t, x) ≥ 0, x ≥ 0, t ∈ [0, 1] and

max
(t,x(t))∈(0,1)×[c1,c2]

f(t, x(t)) ≤M.

(A2) f(t, ŵ) ≤ f(t, x̄), t ∈ [0, 1], c1 ≤ x̂ ≤ x̄ ≤ c2.

(A3)

∫ 1

0
σ1(η)f(η, c1η

3)dη ≥ c1 and

∫ 1

0
σ2(η)f(η, c2)dη ≤ c2.

(H4) f(t, 0) 6≡ 0.

then there are two positive solutions x∗, y∗ of the problem (1) so that 0 < x∗ ≤ y∗ ≤
c2, t ∈ [0, 1] as a limit of limn→∞ xn = x∗ and limn→∞ yn = y∗ where the iterative
schemes are given by for each n = 0, 1, 2 . . . .

x0(t) = c1t
3, xn+1(t) =

∫ 1

0
G(t, η)f

(
η, xn(η)

)
dη,

y0(t) = c2, yn+1(t) =

∫ 1

0
G(t, η)f

(
η, yn(η)

)
dη.

Proof. Let [x0, y0] be the order interval in C[0, 1]. Observe that the fixed points of the
equation Tu = u are the solutions of the problem (1).

The complete continuity of T ([x0, y0]) has been demonstrated in Lemma 3.1
The assumption (A2) assures that T is a monotone operator on order interval [x0, y0].
For t ∈ [0, 1], using the assumptions (A1’) and (A2) and Lemma 2.8, one has

x1 = (Tx0)(t) =

∫ 1

0
G(t, η)f(η, x0(η))dη =

∫ 1

0
G(t, η)f(η, c1t

3)dη

≥ t3
∫ 1

0
σ1(η)f(η, c1η

3)dη ≥ c1t
3 = x0(t)

which implies x0(t) ≤ x1(t), t ∈ [0, 1] and using again the assumption (A2) one gets

x2(t) = (Tx1)(t) =

∫ 1

0
G(t, η)f(η, x1(η))dη ≥

∫ 1

0
G(t, η)f(η, x0(η))dη ≥ x1.

Similar argument shows that

y1 = (Ty0)(t) =

∫ 1

0
G(t, η)f(η, y0(η))dη =

∫ 1

0
G(t, η)f(η, c2)dη

≤ t3
∫ 1

0
σ2(η)f(η, c2)dη ≤ c2 = y0(t).

Then, by induction, one finds the iterative schemes {xn} and {yn} satisfying, t ∈ [0, 1]

y0(t) ≥ y1(t) ≥ · · · ≥ yn(t) ≥ . . . xn(t) ≥ · · · ≥ x1(t) ≥ x0(t)

so that one has by induction, for each n ∈ N,

yn+1 ≤ yn, xn ≤ xn+1.

Now, Lemma 2.4 implies that one has x∗ and y∗ that are minimal and maximal fixed
points of T obeying c1t

3 ≤ x∗(t) ≤ y∗(t) ≤ c2. The assumption (A3) ensures non-zero
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solution when c1 > 0. If c1 = 0 and f(t, 0) 6≡ 0, one has ‖x∗‖ > 0. By Lemma 2.7, one has

x∗(t) = (Tx∗)(t) =

∫ 1

0
G(t, η)f(η, x∗(η))dη

≥
a

6(4− a)
t3
∫ 1

0
(1− η)3ηα−3f(η, x∗(η))dη, (13)

‖x∗‖ = max
t∈[0,1]

∣∣∣(Tx∗)(t)∣∣∣ ≤ (1

2
+

a

6(4− a)

)∫ 1

0
(1− η)3ηα−3f(η, x∗(η))dη. (14)

From (13) and (14), it is found that

x∗(t) ≥
at3

12− 2a
‖x∗‖ > 0.

Thus, the proof is completed. �

Remark 3.1. To compute the solution, the iterative sequences are started off with a simple
function and a constant.

4. A Numerical Example

The numerical results are given by iterative sequences in this section for the following
FBVP 

T
7
2

0 x(t) + 10t3 + 5 + 1
25x(t)(10− x(t)) = 0,

x(k)(0) = 0, k = 0, 1, 2,

x(1) = a
∫ 1

0 x(s) ds.

(15)

Thus, α = 7
2 , a = 1/2, f(t, x) = 10t3 +5+ 1

25x(t)(10−x(t)) in this problem. Let c1 = 0 and
c2 = 5 for easy calculation. Note that the assumptions (A1’) and (A2) for the function
f(t, x) on the set [0, 1]× [0, 5] hold and f(t, 0) = 10t3 +5, f(t, 5) = 10t3 +6. In addition,

a simple calculation reveals that σ1(η) =
1

42
(1− η)3η1/2, σ2(η) =

23

42
(1− η)3η−1/2 and∫ 1

0
σ1(η)f(η, 0)dη ≈ 0.01309 > 0,∫ 1

0
σ2(η)(10η3 + 6)dx ≈ 3.0611 < 5.

Thus, the condition (A2) on [0, 1]× [0, 5] is satisfied. Therefore, the problem has two non
zero solutions w∗, z∗ along with 0 < w∗(t) ≤ z∗(t) ≤ 5, 0 ≤ t ≤ 1 and wn → w∗, zn → z∗,
where

w0(t) = 0,

wn+1 = (Twn)(t),

and

z0(t) = 5,

zn+1 = (Tzn)(t),
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by the help of Theorem 3.1. The first and second term of the sequence wn(t) by the
MATLAB R2016a are given as follows

w0(t) = 0,

w1(t) =
150016t3 − 3360t13/2 + 144144

9009

w2(t) = 7t7/2((720153608192t6)/42599947264875− (24015424t3)/135270135 + (8192t7)/847875

+ (8t7/2)/175 + (32768t10)/233107875 + (32768t13)/49139499123− (595864t13/2)/23648625

− (2400256t19/2)/13816878075− 32/7))/2 + (681242860189069551286t3)/40694766863326901325.

5. Conclusions

In this work, the existence of positive solutions for a class of conformable fractional
equations with integral boundary conditions has been investigated. Using the monotone
iterative method on a cone and some inequalities associated with the Green’s function,
two iterative sequences are constructed for approximating the solution. The corresponding
Green’s function for the conformable fractional differential equations is singular. Thus, the
fixed point theorem can not be directly applied. To overcome this difficulty, the sequences
of operators are defined and it is shown that they converge to the operator so that the
fixed point theorem on this operator can be applied. Not only the existence of a positive
solutions has been proved, but also monotone iterative schemes have been established.
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