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Abstract: This paper introduces a new extension of the gamma distribution, named as a new extended
gamma distribution, via mixture representation of xgamma and gamma distributions. The statistical
properties of the proposed distribution are derived such as moment generating and characteristic
functions, variance, skewness, and kurtosis measures, Lorenz curve, and mean residual life function.
The maximum likelihood, parametric bootstrap, method of moments, least squares, and weighted
least squares estimation methods are considered to obtain the unknown model parameters. The finite
sample performance of estimation methods is discussed via a simulation study. Using the proposed
distribution, we propose a new regression model for the right-skewed response variable as an alternative
to the gamma regression model. Two real data sets are analyzed to convince the readers for the
usefulness of the proposed model.
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1. Introduction

In real-life problems, the analyzed data may consist of a mixed structure of more than one
distribution. Especially, when data is heterogeneous structure model, using the mixture distribution
will be an appropriate approach for data modeling. When the data has multimodality or unimodality,
the mixture distributions are good choices to model the heterogeneous structure (Everitt and Hand
[1]). However, mixture distributions have been used to model the heterogeneous data sets in many
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areas such as survival, biomedical, engineering, and social sciences (see, Chen et al. [2], Erisoglu et
al. [3, 4, 5]).

Mixture distributions can be obtained by both mixtures of two identical distributions and a mixture
of two non-identical distributions. Recently, many studies about the mixture of two identical
distributions were made such as Ahmad and Rahman [6], Jiang and Murthy [7], Sultan et al. [8],
Zakerzadeh and Dolati [9], Ateya [10], Abouammoh et al. [11], El-Bassiouny et al. [12] and
Karakoca et al. [13]. On the other hand, the Lindley distribution, proposed by Lindley [14], is the first
distribution that comes to mind about a mixture of two non-identical distributions. Its probability
density function (pdf) can be written as

fL (x; θ) =
θ2

1 + θ
(1 + x) e−θx = p fE (x; θ) + (1 − p) fG (x; θ) , x > 0, θ > 0 (1.1)

where fE (x; θ) = θe−θx (for x > 0 and θ > 0) is the pdf of the exponential distribution with the scale
parameter θ, fG (x; θ) = θ2xe−θx (for x > 0 and θ > 0) is the pdf of the gamma distribution with the
shape parameter 2 and scale parameter θ and p = θ/ (θ + 1) is the mixing proportion of distributions.
Some mixture of two non-identical distributions has been also introduced in the literature, for example,
the power Lindley distribution, denoted by PL (α, θ), introduced by Ghitany et al. [15] with pdf:

fPL(x;α, θ) =
α θ2

θ + 1
(1 + xα)xα−1e−θxα , x, α, θ > 0,

the gamma Lindley distribution, denoted by GL (α, θ), proposed by Nedjar and Zeghdoudi [16] with
pdf:

fGL(x;α, θ) =
θ2

α(1 + θ)
[(α + αθ − θ)x + 1]e−θx, x, α, θ > 0,

and the xgamma distribution, denoted by XG (θ), proposed by Sen et al. [17] with pdf:

fxgamma(x; θ) =
θ2

1 + θ

(
1 + θ

2 x2
)

e−θx x, θ > 0. (1.2)

Although gamma distribution is widely used in lifetime data modeling, it is not able to model
different characteristics of the data sets such as the bathtub and upside-down failure rates. To remove
the drawbacks of the gamma distribution, we propose a new extended gamma (NEG) distribution as a
two-component mixture of xgamma and gamma distributions with suitable mixing proportions. The
proposed distribution has several advantages over the well-known distributions. For instance, it has
closed-form expressions for its mean, variance and skewness, and kurtosis measures and provides
very flexible hazard rate shapes for lifetime data modeling. The statistical properties of the NEG
distribution are derived. The regression model defined under the NEG density is proposed to model
the right-skewed dependent variable.

Other parts of the study are as follows. In Section 2, the main properties of the NEG distribution
are derived. In Section 3, the parameter estimation problem of the NEG distribution is discussed
comprehensively. In Section 4, a simulation study is given to compare the estimation methods for the
parameters of the NEG distribution. The new regression model is defined and studied in Section 5.
The real data applications of the NEG distribution are presented in Section 6. The study is ended with
the concluding remarks, given in Section 7.
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2. A new extended gamma distribution

The density of gamma distribution is

fGamma (x;α, θ) =
θα

Γ (α)
xα−1e−θx, x > 0, (2.1)

where Γ (·) is

Γ (α) =

∞∫
0

xα−1e−xdx,

and α > 0 and θ > 0 are the shape and scale parameters, respectively. In the recent years, several
generalization of gamma distribution are introduced such as new generalized gamma distribution by
Bourguignon et al. [18], reflected shifted-truncated gamma distribution by Waymyers et al. [19],
Kumaraswamy generalized gamma distribution by Pascoa et al. [20] and among others. Now, we
introduce the NEG distribution with following proposition.

Proposition 1. Let the random variable X follows a NEG distribution if its pdf is given by

f (x;α, θ) =

[
Γ (α)

(
2 + θx2

)
+ 4θα−2xα−1

]
θ2e−θx

2 (θ + 3) Γ (α)
, (2.2)

where α > 0 and θ > 0 are shape and scale parameters, respectively. Hereafter, the density (2.2) is
denoted as NEG (α, θ).

Proof. The NEG distribution is defined as follows

fNEG (x;α, θ) = p fxgamma (x; θ) + (1 − p) fgamma (x;α, θ) , (2.3)

where p = (θ + 1)/(θ + 3), fxgamma (x; θ) and fgamma (x;α, θ) are given in (1.2) and (2.1), respectively.
Substituting (1.2) and (2.1) in (2.3), we have

fNEG (x;α, θ) =

(
θ + 1
θ + 3

)
θ2

θ + 1

(
1 +

θ

2
x2

)
e−θx +

(
2

θ + 3

)
θα

Γ (α)
xα−1e−θx

=
Γ (α) θ2

2 (θ + 3) Γ (α)

(
2 + θx2

)
e−θx +

4θα

2 (θ + 3) Γ (α)
xα−1e−θx

=
Γ (α) θ2

(
2 + θx2

)
e−θx + 4θαxα−1e−θx

2 (θ + 3) Γ (α)

=

[
Γ (α)

(
2 + θx2

)
+ 4θα−2xα−1

]
θ2e−θx

2 (θ + 3) Γ (α)
(2.4)

The proof is completed. �

The NEG distribution is a mixture distribution of xgamma (θ) and Gamma (α, θ) distributions with
mixing proportion p = (θ + 1)/(θ + 3). Therefore, statistical properties of NEG distribution can be
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derived using the properties of mixture distributions. The corresponding cumulative distribution
function (cdf) to (2.2) is

F (x) =
Γ (α)

[
2 − e−θx

(
2 + 2θx + θ2x2

)]
+ 2θΓ (α)

(
1 − e−θx

)
+ 4

[
Γ (α) − γ (α, θx)

]
2Γ (α) (θ + 3)

, (2.5)

where γ (α, θx) is

γ (α, θx) =

∞∫
θx

tα−1e−θtdt.

which is called as incomplete gamma function. The possible pdf shapes of NEG distribution are
displayed in Figure 1. These figures reveal the flexibility of NEG distribution which can be used to
model right-skewed and bi-modal data sets.
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Figure 1. The pdf shapes of the NEG distribution.

2.1. Survival and mean residual life functions

The main reliability characteristics of NEG distribution are discussed via survival and mean residual
life (MRL) functions The survival function (sf) represents the probability that a patient, device, or any
object of interest survive after a specified time point. Therefore, sf has important application fields in
reliability and survival analysis. The sf is defined as S (t) = 1 − F(t) which is given below for the NEG
distribution

S (t) = 1 −
Γ (α)

[
2 − e−θx

(
2 + 2θt + θ2t2

)]
+ 2θΓ (α)

(
1 − e−θt

)
+ 4

[
Γ (α) − γ (α, θt)

]
2Γ (α) (θ + 3)

. (2.6)
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The mean residual life function of NEG distribution is

MRL (t) =
1

S (t)

∞∫
t

x f (x) dx − t, (2.7)

where S (t) is given in (2.6) and

∞∫
t

x f (x) dx =
e−t θ (t θ + 1)

θ + 3
+

2 γ (α + 1, t θ)
θ Γ (α) (θ + 3)

+
e−t θ

(
t3 θ3 + 3 t2 θ2 + 6 t θ + 6

)
2 θ (θ + 3)

(2.8)

2.2. Hazard rate function

The hazard rate function (hrf) is defined as h(t) = f (t)/S (t) which is given below for the NEG
distribution

h (t) =
4 θα tα + 2 θ2 t Γ (α) + θ3 t3 Γ (α)

t
(
2 Γ (α) + 4 eθ t γ (α, θ t) + 2 θ Γ (α) + 2 θ t Γ (α) + θ2 t2 Γ (α)

) . (2.9)

The possible hrf shapes of NEG distribution are displayed in Figure 2. These plots reveal that NEG
distribution is a very attractive distribution to model the different characteristics of the lifetime data
sets with increasing, decreasing, bathtub, and upside-down shapes.
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Figure 2. The hrf shapes of the NEG distribution.

Further, Figure 3 indicates the possible shape regions of hrf of NEG distribution. They are bathtub,
increasing, decreasing, uni-modal (upside-down) and N-shaped (increasing-decreasing-increasing)
shapes.
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Figure 3. The possible hrf shapes regions of NEG distribution for parameters values.

2.3. Lorenz curve

The Lorenz curve (LC), introduced by Lorenz [21], is widely used in economics to represent the
distribution of income and inequality of wealth distribution. The LC of X random variable is given by

L (t) =

t∫
0

x f (x) dx

∞∫
0

t f (t) dt
(2.10)

which f (·) is the pdf of X random variable. So, substituting pdf of NEG distribution, (2.2), in
(2.10), the LC of NEG distribution is

L (t) =

Γ (α)
[
6 − e−tθ

(
6 + 6θt + 3θ2t2 + θ3t3

)
+ 2θ − 2e−tθθ (1 + θt)

]
+4 (Γ (α + 1) − γ (α + 1, θt))

2Γ (α) (2α + θ + 3)
(2.11)

It is obvious that (2.11) can be used in modeling the distribution of income by economists.

2.4. Moments and related measures

Here, the mean, variance and related measures of the NEG distribution are derived.

Proposition 2. The rth raw moments about the origin of X are

E (Xr) =
2θΓ (α) Γ (r + 1) + Γ (α) Γ (r + 3) + 4Γ (r + α)

2 (θ + 3) θrΓ (α)
. (2.12)
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Proof.

E (Xr) =

∞∫
0

xr f (x) dx

=

∞∫
0

xr θ2

2 (θ + 3)

(
2 + θx2

)
e−θxdx +

∞∫
0

xr

(
2

θ + 3

)
θα

Γ (α)
xα−1e−θxdx

=

∞∫
0

θ2

2 (θ + 3)

(
2xr + θxr+2

)
e−θx +

∞∫
0

(
2

θ + 3

)
θα

Γ (α)
xr+α−1e−θxdx

=
2θΓ (r + 1) + Γ (r + 3)

2θr (θ + 3)
+

2Γ (α + r)
Γ (α) θr (θ + 3)

=
2θΓ (α) Γ (r + 1) + Γ (α) Γ (r + 3) + 4Γ (α + r)

2 (θ + 3) θrΓ (α)
(2.13)

The proof is completed. �

Using (2.12), the first (mean) and second raw moments of X are given, respectively, by

E (X) = µ =
2α + θ + 3
θ (θ + 3)

, (2.14)

E
(
X2

)
=

2
(
α2 + α + θ + 6

)
θ2 (θ + 3)

. (2.15)

The variance of X is

Var (X) = σ2 =
2α2 (θ + 1) − 2α (θ + 3) + (θ + 3) (θ + 9)

θ2(θ + 3)2 . (2.16)

Using the well-known relations, the skewness and kurtosis measures of NEG distribution are given,
respectively, by

S =
2

(
α3 θ2 − α3 + 6α2 θ + 18α2 − α θ2 − 24α θ − 63α + θ3 + 21 θ2 + 99 θ + 135

)
θ3 (θ + 3)3σ3

(2.17)

K =


2α4+12α3+22α2+12α+24 θ+360

θ4 (θ+3)

−
3 (2α+θ+3)4

θ4 (θ+3)4 −
4 (2α+θ+3) (2α3+6α2+4α+6 θ+60)

θ4 (θ+3)2

+
6 (2α+θ+3)2 (2α2+2α+2 θ+12)

θ4 (θ+3)3

σ−4 (2.18)

The skewness and kurtosis of the NEG distribution are displayed in Figure 4 for different values of
the parameters α and θ. From these figures, we conclude the following results: (i) when α increases, the
skewness, and kurtosis both decrease; (ii) when θ increases, the skewness, and kurtosis both increase.
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Figure 4. The skewness and kurtosis measures of the NEG distribution.

Proposition 3. The moment generating function of X is

M(t) =
θ2

(θ − t) (θ + 3)
+

θ3

(θ − t)3 (θ + 3)
+

2θα

(θ − t)α (θ + 3)
. (2.19)

Proof.

M(t) =

∞∫
0

etx f (x) dx.

=

∞∫
0

etx θ2

(θ + 3)
e−θxdx +

∞∫
0

etx 1
2 (θ + 3)

θ3x2e−θxdx +

∞∫
0

etx 2
(θ + 3) Γ (α)

θαxα−1e−θxdx.

=
θ2

(θ − t) (θ + 3)
+

θ3

(θ − t)3 (θ + 3)
+

2θα

(θ − t)α (θ + 3)
.

The proof is completed. �

Substituting t by it in (2.19), the characteristic function of NEG distribution is

ϕ(t) =
θ2

(θ − it) (θ + 3)
+

θ3

(θ − it)3 (θ + 3)
+

2θα

(θ − itt)α (θ + 3)
. (2.20)

2.5. Generating random variables

Since the NEG distribution is a mixture distribution of xgamma (θ) and Gamma (α, θ) distributions
with mixing proportion p = (θ + 1)/(θ + 3), the below algorithm can be used for generating data from
the NEG distribution.

1. Set the sample size n and the parameter values α and θ.
2. Generate Ui ∼ uniform (0, 1),i = 1, 2, ..., n.

AIMS Mathematics Volume 6, Issue 3, 2418–2439.



2426

3. Generate Vi ∼ xgamma (θ),i = 1, 2, ..., n.
4. Generate Wi ∼ Gamma (α, θ),i = 1, 2, ..., n.
5. If Ui ≤ (θ + 1)/(θ + 3), Xi = Vi, otherwise, Xi = Wi.

3. Estimation

In this section, three estimation methods are used to obtain unknown parameters of NEG
distribution. These are maximum likelihood (ML), parametric bootstrap, and method of moments
(MM) estimation methods. The rest of this section is devoted to inference on these estimation
methods.

3.1. Maximum likelihood

The log-likelihood function of NEG (α, θ) is

` (Φ) = 2n ln (θ) − nθx̄ +

n∑
i=1

ln
[
Γ (α)

(
2 + θx2

i

)
+ 4θα−2xα−1

i

]
− n ln [2 (θ + 3) Γ (α)] , (3.1)

Let x1, x2, ..., xn be a random sample following the distribution, NEG (α, θ) and whereΦ = (α, θ) is the
unknown parameter vector. Taking the partial derivatives of (3.1) with respect to α and θ, the score
vector components are obtained as

∂`

∂θ
=

2n
θ
−

n
θ + 3

+

n∑
i=1

4 (α − 2) θαxαi + θ3Γ (α)

θ
[
4θαxαi + θ2xiΓ (α)

(
θx2

i + 2
)] , (3.2)

∂`

∂α
=

n∑
i=1

Γ (α) ψ(α)
(
θ x2

i + 2
)

+ 4 θα−2 xα−1
i log(θ) + 4 θα−2 xα−1

i log(xi)

Γ (α)
(
θ x2

i + 2
)

+ 4 θα−2 xα−1
i

− nψ(α) , (3.3)

where ψ (α) is the digamma function which is defined as ψ (α) = ∂ ln (Γ (α))/∂α. The ML
estimators of (α, θ), say

(
α̂, θ̂

)
, can be obtained by simultaneous solutions of (3.2) and (3.3) against

zero. However, it is not possible to obtain explicit forms of ML estimators of α and θ because of the
non-linear functions in (3.2) and (3.3). Therefore, the direct maximization of (3.1) is needed to obtain
the ML estimators of NEG distribution. Here, the optim function of R software is used to minimize
minus of (3.1) which is equivalent to maximization of (3.1). The observed information matrix is
given by

IF (Φ) = −

[
Iαα Iαθ
Iθα Iθθ

]
(α̂,θ̂)

where Iαα = ∂2`
/
∂α2, Iαθ = Iθα= ∂2`

/
∂α∂θ, Iθθ = ∂2`

/
∂θ2. The squared values of the diagonal

elements of the inverse of above matrix give the standard errors of the estimated parameters. So, we
have the following quantities for the confidence intervals of the parameters, α and θ, respectively,

α̂ ± zp/2

√
Var(α̂), θ̂ ± zp/2

√
Var(̂θ)

where Var(α̂) and Var(̂θ) are the square root of the diagonal elements of I−1
F (Φ) and zp/2 is easily

obtained by the quantile function of N (0, 1).
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3.2. Parametric bootstrap

Parametric bootstrap method, introduced by Efron [22] can be used to obtain bias-corrected ML
estimators of NEG distribution. The estimated bias of Φ̂ is

B̂
(
Φ̂

)
=

1
B

B∑
i=1

Φ̂( j) − Φ̂, (3.4)

where Φ̂̂Φ̂Φ j is the MLE of Φ̂ obtained from the jth bootstrap sample generated by assuming Φ̂ is true
and B is the bootstrap replications (see, Mazucheli et al. [23, 24]). So, the bootstrap bias-corrected
(BBC) estimator of Φ̂ is

Φ̂BBC = 2Φ̂̂Φ̂Φ −
1
B

B∑
i=1

Φ̂( j). (3.5)

3.3. Method of moments

The MM is the simple and effective estimation method generally for large sample sizes. The idea of
MM estimators is based on equating the theoretical moments to empirical ones. So, equating the first
two theoretical moments of NEG distribution to their empirical counterparts, we have

2α + θ + 3
θ (θ + 3)

= m1, (3.6)

2
(
α2 + α + θ + 6

)
θ2 (θ + 3)

= m2, (3.7)

where m1 =
n∑

i=1
xi

/
n and m2 =

n∑
i=1

x2
i

/
n are the first and second sample moments. The MM estimators of

α and θ, say α̂MM and θ̂MM are simultaneous solutions of (3.6) and (3.7).

3.4. Least squares

Let x1:n, x2:n, x3:n, · · · , xn:n be an ordered sample of size n from a probability distribution with cdf
F (·). The mean and variance of F

(
X j:n

)
are, respectively,

E
[
F

(
X j:n

)]
=

j
n + 1

, (3.8)

Var
[
F

(
X j:n

)]
=

j (n − j + 1)
(n + 1)2 (n + 2)

. (3.9)

The least squares estimators (LSEs) of α and θ are procured by means of the minimization of the
following equation.

n∑
j=1

(
F

(
X j:n

)
−

j
n + 1

)2

, (3.10)
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where F
(
Y j:n

)
is in (2.5) and replacing it in (3.10), we have

n∑
j=1


Γ (α)

[
2 − e−θx j:n

(
2 + 2θx j:n + θ2x2

j:n

)]
+2θΓ (α)

(
1 − e−θx j:n

)
+ 4

[
Γ (α) − γ

(
α, θx j:n

)]
2Γ (α) (θ + 3)

−
j

n + 1



2

. (3.11)

The detailed information on the LSE can be found in Ding [25] and Ding et al. [26].

3.5. Weighted least squares

The weighted LSEs (WLSEs) of α and θ are, respectively,

n∑
j=1

w j

[
F

(
X j:n

)
−

j
n + 1

]2

, (3.12)

where

w j =
1

Var
[
F

(
X j:n

)] =
(n + 1)2 (n + 2)

j (n − j + 1)
. (3.13)

Replacing eqrefwj and (2.5) with w j and F
(
X j:n

)
, we have

n∑
j=1

(n + 1)2 (n + 2)
j (n − j + 1)


Γ (α)

[
2 − e−θx j:n

(
2 + 2θx j:n + θ2x2

j:n

)]
+2θΓ (α)

(
1 − e−θx j:n

)
+ 4

[
Γ (α) − γ

(
α, θx j:n

)]
2Γ (α) (θ + 3)

−
j

n + 1



2

. (3.14)

The minimization of (3.14) give the WLSEs of the parameters, α and θ.

4. Simulation studies

The simulation studies are widely used to compare the finite sample performance of estimation
methods (see, Zaka et al. [27] and Zaidi et al. [28]). Now, we give a simulation study to see the
efficiencies of the presented estimation methods, in Section 3. The bootstrap replication B is chosen
1, 000. The below steps are implemented.

1. Set the parameters α, θ and the number of simulation replications, N,
2. Generate random variables from NEG (α, θ),
3. Using the generated samples in step 2, estimated the parameters of NEG (α, θ) by means of ML,

BBC, LS and WLS estimation method
4. Estimate the biases, mean square errors (MSEs) and mean relative errors (MREs) for each

parameters and estimation methods.
5. Repeat steps 2–4 N times.
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4.1. Scenario I

In the first simulation scenario, the following settings are used: N = 10, 000, α = 2 and θ = 0.5.
The required formulations of biases, MSEs, and MREs can be found in Altun et al. [29]. We know
that when n → inf, the estimated biases, and MSEs are near the zero and MREs are near the one. The
statistical software, R, is used. The simulation results are graphically summarized in Figure 5. As seen
from these plots, when the sample size increases, the estimated biases, and MSEs are near zero for all
estimation methods. As expected, the estimated MSEs are also near the one for all estimation methods.
However, we suggest the use of BBC estimation method for small samples since it approaches nominal
values of the bias, MSE, and MRE faster than the other four estimation methods. One can obtain
similar results for different simulation design.
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Figure 5. The simulation results of the NEG distribution for the first scenario.
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4.2. Scenario II

In the second scenario, the parameter values of the NEG distribution is changed. The used parameter
values are α = 0.5 and θ = 3. The simulation results are summarized in Figure 6. The results are very
similar to the results of the first scenario. All estimation methods work well based on the estimated
values of the biases, MSEs, and MREs. However, the BBC method is better for small sample sizes.
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Figure 6. The simulation results of the NEG distribution for the second scenario.

5. NEG regression model

The gamma regression model, proposed by Cepeda-Cuervo [30] and Cepeda and Gamerman [31], is
widely used to model the right-skewed response variable (see, Bateson [32]). Recently, Altun [33, 34]
studied several models such as Lomax and weighted-exponential regression models to provide more
accurate modeling of the skewed response variables. Let Y ∼ Gamma (α, θ). Using the transformation
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θ = α/µ in (2.1), we have

f (y;α, µ) =
1

yΓ (α)

(
αy
µ

)α
e−αy/µ, y > 0, (5.1)

where µ > 0, α > 0 and E (Y) = µ. Now, using the appropriate link function, we can link the
covariates to mean of the random variable Y . In classical gamma regression model (with constant
shape parameter), the mean structure is given by

g (µi) = xxxT
i βββ, (5.2)

where βββ = (β0, β1, ..., βk)T is the vector of unknown regression parameters (k < n) and
xxxi = (xi1, xi2, ..., xik)T is the vector of covariates. The link function, g (·) : (0,∞) 7→ < is the increasing
and twice differentiable function (see, McCullagh and Nelder [35]).

Now, as in gamma regression model, we propose an alternative regression model to the gamma
regression model by means of following proposition.

Proposition 4. Let θ =
{ √

8αµ + 9µ2 + 6µ + 1 − 3µ + 1
}

(2µ)−1 be in (2.2). Under this
re-parametrization, the pdf of NEG is

f (y;α, θ) =

( √
8αµ+9µ2+6µ+1−3µ+1

2µ

)2


Γ (α)

(
2 +

√
8αµ+9µ2+6µ+1−3µ+1

2µ y2
)

+4
( √

8αµ+9µ2+6µ+1−3µ+1
2µ

)α−2

yα−1


×

[
2
( √

8αµ+9µ2+6µ+1−3µ+1
2µ + 3

)
Γ (α)

]−1

exp
[( √

8αµ + 9µ2 + 6µ + 1 − 3µ + 1
)

(2µ)−1y
] (5.3)

where µ > 0, α > 0 and E (Y) = µ.

The reason of this re-parametrization is to make the mean equation of NEG simple for linking the
covariates to mean of NEG random variable. The log-link function is used to link the covariates to
mean of the random variable Y , as follows

ln (µi) = xxxT
i βββ. (5.4)

5.1. Estimation of the parameters of NEG regression model

We use the ML estimation method to obtain the unknown parameter of NEG regression model. The
log-likelihood function of NEG regression model is

` (τττ) = 2
n∑

i=1
ln

( √
8αµi+9µ2

i +6µi+1−3µi+1
2µi

)
+

n∑
i=1

ln

Γ (α)
(
2 +

√
8αµi+9µ2

i +6µi+1−3µi+1
2µi

y2
i

)
+ 4

( √
8αµi+9µ2

i +6µi+1−3µi+1
2µi

)α−2

yα−1
i


−

n∑
i=1

ln
[
2
( √

8αµi+9µ2
i +6µi+1−3µi+1
2µi

+ 3
)
Γ (α)

]
+

n∑
i=1

[(√
8αµi + 9µ2

i + 6µi + 1 − 3µi + 1
)

(2µi)−1yi

]
, (5.5)

where τττ = (βββ, α), µi = exp
(
xxxT

i βββ
)
. The ML estimators of τττ, say τ̂̂τ̂τ is obtained by direct maximization of

5.5. To do this, optim function of R software is used. The well-known property of the MLE method
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is that the asymptotic distribution of τ̂ττ − τττ is Nk+2(0,K(τττ)−1). Here, K(τττ) represents the expected
information matrix which is approximated by observed information matrix. We calculate the observed
information matrix evaluated at τ̂ττ with the dimension (k + 2) × (k + 2) to obtain the standard errors of
the estimated parameters. It can be obtained by hessian function of R software.

5.2. Residuals analysis

The randomized quantile residuals (rqrs), introduced by Dunn and Smyth [36] is used to check the
model accuracy on the fitted data set. The rqrs are defined by

r̂i = Φ−1 (ûi) , (5.6)

where ûi = F
(
yi| β̂̂β̂β, α

)
. The rqrs are distributed N (0, 1) if the fitted model is statistically valid.

6. Empirical studies

In this section, NEG distribution is compared with competitive models to demonstrate its
performance in real data modeling. Two real data sets are analyzed. The first application deals with
the univariate data modeling. The second one is done for regression modeling.

6.1. Myelogeneous leukaemia data

We compare the NEG distribution with several competitive models such as Lindley, xgamma,
gamma, power Lindley and generalized Lindley distribution. The data represents the survival times of
the patients having the acute Myelogeneous Leukaemia (see, Feigl and Zelen [37]). The data set was
recently studied by Mead [38]. The selection of the best model for the data can be done with model
selection criteria. In this study, we use three goodness-of-fit tests. These are Kolmogorov-Smirnov
(KS ), Cramer-von-Mises, (W∗) and Anderson-Darling (A∗). Additionally, two information criteria,
Akaike Information Criteria (AIC) and Bayesian information criterion (BIC), is used to select the best
model for the models passing the first step. The first step is the goodness-of-fit test. If the p-value of
K-S test is larger than the critical value, 0.05, it means that the distribution provides sufficient fit. In
the second step, we use AIC, BIC, A* and W* statistics to select the model. In this case, the
distribution with the lowest values of the AIC and BIC statistics is the best model for the data. Before
starting the data analysis, it is very useful to have information about the empirical behavior of the hrf.
The total time test (TTT) plot is used for this goal (see, Aarset [39]). According to the shape of the
TTT plot, we decide the empirical shape of the hrf. If the TTT plot has a concave shape, the hrf is
increasing, otherwise, the hrf is decreasing. If the TTT plot has a convex-concave shape, the hrf is a
bathtub. The TTT plot of the used data is displayed in Figure 7 which indicates that the empirical hrf
is the bathtub.
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Figure 7. TTT plot for the data set.

Table 1 contains the results for the fitted distributions. As mentioned above, we decide the best-
fitted model in two steps. Based on the p-values of the KS test, NEG, power Lindley, generalized
Lindley, and gamma distribution provide adequate fits. So, these distributions are passed the first step.
Now, the distribution with the lowest values of the AIC, BIC, A* and W* statistics indicates the best
model. According to Table 1, the NEG distribution has the lowest values of these statistics. Therefore,
the proposed distribution is the best choice for the data used.

The fitted densities, empirical cdfs, and hrf plots of all model are sketched in Figure 8. Hence, we
observe that the NEG fitting and successfully captures the empirical shape of the data set. Further, all
estimated hrfs have not fitted as bathtub shaped except the NEG model. Hence, only the NEG model
deals with Figure 7 for the data set.

Table 1. The results of the fitted distributions.

Model α̂ θ̂ − ˆ̀ AIC BIC A∗ W∗ KS

NEG 0.6911 0.0351 152.7853 309.5706 312.5637 0.5783 0.0848 0.1277
(0.1416) (0.0064) [0.6545]

Power Lindley 0.5809 0.2477 153.9968 311.9935 314.9865 0.6578 0.0963 0.1344
(0.0676) (0.0674) [0.5895]

Xgamma 0.0674 176.3484 354.6967 356.1932 13.5500 1.2762 0.3545
(0.0.0069) [0.0005]

Generalized Lindley 0.0239 0.0244 155.4502 314.9003 317.8934 2.3067 0.3250 0.2182
(0.0165) (0.0093) [0.0863]

Gamma 0.6874 0.0168 153.6737 311.3473 314.3404 0.6803 0.1013 0.1390
(0.1440) (0.0049) [0.5468]

Lindley 0.0478 168.8337 339.6674 341.1639 9.5929 0.8975 0.3250
(0.0059) [0.0018]
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Figure 8. Estimated densities (left), cdfs (middle) and hrfs (right).

6.2. Homicide data

Now, we demonstrate the importance of the NEG regression model over the gamma regression
model. The data source is the Better Life Index (BLI). The BLI is calculated for OECD countries as
well as Brazil Russia and South Africa. These data set can be download from https://stats.oecd.
org/index.aspx?DataSetCode=BLI2016. It consists of 11 indicators. These indicators have 24
variables. Here, we relate the homicide rate (yi) with long-term unemployment rate (xi1) and labour
market insecurity (xi2). The NEG and gamma regression models are used to model below regression
structure.

g(µi) = β0 + β1xi1 + β2xi2 (6.1)

Table 2 lists the estimated parameters of gamma and NEG regression models and corresponding
standard errors and p-values. As seen from these results, all estimated parameters are found statistically
significant for both regression models. According to the estimated regression coefficients, we conclude
that when the long-term unemployment rate increases, the homicide rate decreases surprisingly. On the
other hand, when the labour market insecurity increases, the homicide rate also increases, as expected.

Table 2. The results of the NEG and gamma regression models.

Parameters
Gamma NEG

Estimates Std. Errors t-value p-value Estimates Std. Errors t-value p-value

β0 2.017 0.173 11.639 <0.001 2.015 0.180 11.190 <0.001
β1 -0.199 0.070 -2.839 0.007 -0.203 0.067 -3.048 0.002
β2 0.126 0.044 2.844 0.007 0.128 0.045 2.849 0.004
α 1.566 - - - 1.841 - - -

−` 117.537 115.278
AIC 243.075 238.557
BIC 249.625 245.107

After fitting the regression models, we check the model accuracy with residual analysis. The rqs
are obtained and plotted in Figure 9. Both regression model does not contain any possible outlier
observation.

AIMS Mathematics Volume 6, Issue 3, 2418–2439.

https://stats.oecd.org/index.aspx?DataSetCode=BLI2016
https://stats.oecd.org/index.aspx?DataSetCode=BLI2016


2435

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

Normal Quantiles

ri

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

Normal Quantiles

ri

Figure 9. The rqs of gamma (left) and NEG (right) regression models.

7. Conclusions and future work

In this study, the two-parameter distribution is defined and studied comprehensively. The different
estimation methods are investigated to estimate the unknown parameters of NEG distribution.
Statistical properties of NEG distribution are derived. More importantly, a new regression model for
the right-skewed response variable is introduced and is compared with the gamma regression model
via an application to the actuarial data set. Empirical results show that NEG distribution could be a
competitive model and can provide better modeling ability than its counterparts. The advanced
residual analysis and influential diagnostics of the NEG regression model is a planned future work of
this study. We believe that NEG distribution gains much attention from practitioners and increases its
popularity soon.

Appendix

The derivations of the cdf and Lorenz curve are given below.

F (x) =

x∫
0

f (t) dt.

=

x∫
0

θ2

2 (θ + 3)

(
2 + θt2

)
e−θtdt +

∞∫
0

(
2

θ + 3

)
θα

Γ (α)
tα−1e−θtdt.

=
2 − e−xθ

(
2 + 2θx + θ2x2

)
+ 2θ

(
1 − e−xθ

)
2 (θ + 3)

+
2Γ (α) − 2γ (α, θx)

Γ (α) (θ + 3)

AIMS Mathematics Volume 6, Issue 3, 2418–2439.



2436

=
Γ (α)

[
2 − e−xθ

(
2 + 2θx + θ2x2

)]
+ 2Γ (α) θ

(
1 − e−xθ

)
+ 4

[
Γ (α) − γ (α, θx)

]
2Γ (α) (θ + 3)

.

L (t) =

A︷        ︸︸        ︷
t∫

0

x f (x) dx

∞∫
0

t f (t) dt

︸      ︷︷      ︸
B

B =

∞∫
0

t f (t) dt = E (X) =
2α + θ + 3
θ (θ + 3)

A =

t∫
0

x f (x) dx

=

t∫
0

x
θ2

2 (θ + 3)

(
2 + θx2

)
e−θxdx +

t∫
0

x
(

2
θ + 3

)
θα

Γ (α)
xα−1e−θxdx

=

∞∫
0

θ2

2 (θ + 3)

(
2x + θx3

)
e−θx +

∞∫
0

(
2

θ + 3

)
θα

Γ (α)
xαe−θxdx

=
6 − e−tθ

(
6 + 6θt + 3θ2t2 + θ3t3

)
+ 2θ − 2e−tθθ (1 + θt)

2θ (θ + 3)
+

2 (Γ (α + 1) − γ (α + 1, θt))
Γ (α) θ (θ + 3)

=
Γ (α)

[
6 − e−tθ

(
6 + 6θt + 3θ2t2 + θ3t3

)
+ 2θ − 2e−tθθ (1 + θt)

]
+ 4 (Γ (α + 1) − γ (α + 1, θt))

2Γ (α) θ (θ + 3)

L (t) =
A
B

=
Γ (α)

[
6 − e−tθ

(
6 + 6θt + 3θ2t2 + θ3t3

)
+ 2θ − 2e−tθθ (1 + θt)

]
+ 4 (Γ (α + 1) − γ (α + 1, θt))

2Γ (α) (2α + θ + 3)

Conflict of interest

The authors declare there is no conflict of interest.

AIMS Mathematics Volume 6, Issue 3, 2418–2439.



2437

References

1. B. S. Everitt, D. J. Hand, Finite Mixture Distributions, Chapman and Hall, London, 1981.

2. W. C. Chen, B. M. Hill, J. B. Greenhouse, J. V. Fayos, Bayesian analysis of survival curves for
cancer patients following treatment, Bayesian Stat., 2 (1985), 299–328.

3. M. Erisoglu, N. Calis, T. Servi, U. Erisoglu, M. Topaksu, The mixture distribution models for
interoccurence times of earthquakes, Russian Geol. Geophys., 52 (2011a), 685–692.

4. U. Erisoglu, M. Erisoglu, H. Erol, A mixture model of two different distributions approach to the
analysis of heterogeneous survival data, Int. J. Comput. Math. Sci. 5 (2011b), 75–79.

5. U. Erisoglu, M. Erisoglu, H. Erol, Mixture model approach to the analysis of heterogeneous
survival data, Pakistan J. Stat., 5 (2012), 115–130.

6. K. E. Ahmad, A. M. Abd-El Rahman, Updating a nonlinear discriminant function estimated from
a mixture of two Weibull distributions, Math. Comput. Model., 19 (1994), 41–51.

7. R. Jiang, D. N. P. Murthy, Two sectional models involving three Weibull distributions, Qual. Reliab.
Eng. Int., 13 (1997), 83–96.

8. K. S. Sultan, M. A. Ismail, A. S. Al-Moisheer, Mixture of two inverse Weibull distributions:
Properties and estimation, Comput. Stat. Data Anal., 51 (2007), 5377–5387.

9. H. Zakerzadeh, A. Dolati, The generalized Lindley distribution, J. Math. Ext., 3 (2009), 1–17.

10. S. F. Ateya, Maximum likelihood estimation under a finite mixture of generalized exponential
distributions based on censored data, Stat. Papers, 55 (2014), 311–325.

11. A. M. Abouammoh, A. M. Alshangiti, I. E. Ragab, A new generalized Lindley distribution, J. Stat.
Comput. Simul., 85 (2015), 3662–3678.

12. A. H. El-Bassiouny, E. D. Medhat, M. Abdelfattah, M. S. Eliwa, Mixture of exponentiated
generalized Weibull-Gompertz distribution and its applications in reliability, J. Stat. Appl. Probab.,
5 (2016), 455–468.

13. A. Karakoca, U. Erisoglu, M. Erisoglu, A comparison of the parameter estimation methods for
bimodal mixture Weibull distribution with complete data, J. Appl. Stat., 42 (2015), 1472–1489.

14. D. V. Lindley, Fiducial distributions and Bayes’ theorem, J. Royal Stat. Society. Series B
(Methodological), 20 (1958), 102–107.

15. M. E. Ghitany, D. K. Al-Mutairi, N. Balakrishnan, L. J. Al-Enezi, Power Lindley distribution and
associated inference, Comput. Stat. Data Anal., 64 (2013), 20–33.

16. S. Nedjar, H. Zeghdoudi, On gamma Lindley distribution: Properties and simulations, J. Comput.
Appl. Math., 298 (2016), 167–174.

17. S. Sen, S. S. Maiti, N. Chandra, The xgamma distribution: Statistical properties and application, J.
Modern Appl. Stat. Methods, 15 (2016), 774–788.

18. M. Bourguignon, M. D. C. S. Lima, J. Leao, A. D. Nascimento, L. G. B. Pinho, G. M. Cordeiro,
A new generalized gamma distribution with applications, Am. J. Math. Manage. Sci., 34 (2015),
309-342.

AIMS Mathematics Volume 6, Issue 3, 2418–2439.



2438

19. S. D. Waymyers, S. Dey, H. Chakraborty, A new generalization of the gamma distribution with
application to negatively skewed survival data, Commun. Stat.-Simul. Comput., 47 (2018), 2083–
2101.

20. M. A. de Pascoa, E. M. Ortega, G. M. Cordeiro, The Kumaraswamy generalized gamma
distribution with application in survival analysis, Stat. Methodol., 8 (2011), 411–433.

21. M. O. Lorenz, Methods of measuring the concentration of wealth, Publ. Am. Stat. Assoc., 9 (1905),
209–219.

22. B. Efron, The jackknife, the bootstrap, and other resampling plans, Vol. 38. Philadelphia, PA, USA:
SIAM, 1982.

23. J. Mazucheli, A. F. B. Menezes, S. Dey, Bias-corrected maximum likelihood estimators of the
parameters of the inverse Weibull distribution, Comm. Stat.-Simul. Comput., 48 (2019), 2046–
2055.

24. J. Mazucheli, A. F. B. Menezes, S. Dey, Improved maximum-likelihood estimators for the
parameters of the unit-gamma distribution, Comm. Stat.-Theory Methods, 47 (2018), 3767–3778.

25. F. Ding, Decomposition based fast least squares algorithm for output error systems, Signal
Process., 93 (2013), 1235–1242.

26. F. Ding, P. X. Liu, G. Liue, Gradient based and least-squares based iterative identification methods
for OE and OEMA systems, Signal Process., 20 (2010), 664–677.

27. A. Zaka, A. S. Akhter, R. Jabeen, The new reflected power function distribution: Theory,
simulation application., Aims Math., 5 (2020), 5031–5054.

28. S. M. Zaidi, M. M. A. Sobhi, M. El-Morshedy, A. Z. Afify, A new generalized family of
distributions: Properties and applications, Aims Math., 6 (2021), 456–476.

29. E. Altun, H. M. Yousof, G. G. Hamedani, A new log-location regression model with influence
diagnostics and residual analysis, Facta Universitatis, Series: Math. Inf., 33 (2018), 417–449.

30. E. C. Cuervo, Modelagem da variabilidade em modelos lineares generalizados, (Doctoral
dissertation, Tese de D. Sc., IM-UFRJ, Rio de Janeiro, RJ, Brasil, 2001.

31. E. Cepeda, D. Gamerman, Bayesian methodology for modeling parameters in the two parameter
exponential family, Revista Estadı́stica, 57 (2005), 93–105.

32. T. F. Bateson, Gamma regression of interevent waiting times versus poisson regression of daily
event counts: Inside the epidemiologist’s toolbox-selecting the best modeling tools for the job,
Epidemiology, 20 (2009), 202–204.

33. E. Altun, Weighted-exponential regression model: An alternative to the gamma regression model,
Int. J. Model., Simul., Sci. Comput., 10 (2019), 1–15.

34. E. Altun, The Lomax regression model with residual analysis, J. Appl. Stat., Forthcoming (2020),
1–10.

35. J. McCullagh, J. Nelder, Generalized Linear Models, Second Edition, Chapman and Hall, London,
1989.

36. P. K. Dunn, G. K. Smyth, Randomized quantile residuals, J. Comput. Graphical Stat., 5 (1996),
236–244.

AIMS Mathematics Volume 6, Issue 3, 2418–2439.



2439

37. P. Feigl, M. Zelen, Estimation of exponential survival probabilities with concomitant information,
Biometrics, 21 (1965), 826–838.

38. M. E. Mead, The beta exponentiated Burr XII distribution, J. Stat.: Advances Theory Appl. 12
(2014), 53–73.

39. M. V. Aarset, How to identify a bathtub hazard rate, IEEE Trans. Reliab., 36 (1987), 106–108.

© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 3, 2418–2439.

http://creativecommons.org/licenses/by/4.0

	Introduction
	A new extended gamma distribution
	Survival and mean residual life functions
	Hazard rate function
	Lorenz curve
	Moments and related measures
	Generating random variables

	Estimation
	Maximum likelihood
	Parametric bootstrap
	Method of moments
	Least squares
	Weighted least squares

	Simulation studies
	Scenario I
	Scenario II

	NEG regression model
	Estimation of the parameters of NEG regression model
	Residuals analysis

	Empirical studies
	Myelogeneous leukaemia data
	Homicide data

	Conclusions and future work

