(ψ, φ)-weak Contraction on Ordered Uniform Spaces

Duran Turkoglu ${ }^{\text {a,b }}$, Vildan Ozturk ${ }^{\text {c }}$
${ }^{a}$ Department Of Mathematics, Faculty Of Science, Gazi University, Teknikokullar, 06500, Ankara, Turkey
${ }^{b}$ Faculty Of Science and Arts, Amasya University, Amasya, Turkey
${ }^{c}$ Department Of Mathematics, Faculty Of Science and Art, Artvin Coruh University, 08000, Artvin, Turkey

Abstract

In this paper, we prove a fixed point theorem for (ψ, φ)-contractive mappings on ordered uniform space.

1. Introduction

We call a pair (X, ϑ) to be a uniform space which consists of a non-empty set X together with an uniformity ϑ of wherein the latter begins with a special kind of filter on $X \times X$ whose all elements contain the diagonal $\Delta=\{(x, x): x \in X\}$. If $V \in \vartheta$ and $(x, y) \in V,(y, x) \in V$ then x and y are said to be V-close. Also a sequence $\left\{x_{n}\right\}$ in X, is said to be a Cauchy sequence with regard to uniformity ϑ if for any $V \in \vartheta$, there exists $N \geq 1$ such that x_{n} and x_{m} are V-close for $m, n \geq N$. An uniformity ϑ defines a unique topology $\tau(\vartheta)$ on X for which the neighborhoods of $x \in X$ are the sets $V(x)=\{y \in X:(x, y) \in V\}$ when V runs over ϑ.

A uniform space (X, ϑ) is said to be Hausdorff if and only if the intersection of all the $V \in \vartheta$ reduces to diagonal Δ of X i.e. $(x, y) \in V$ for all $V \in \vartheta$ implies $x=y$. Notice that Hausdorffness of the topology induced by the uniformity guarantees the uniqueness of limit of a sequence in uniform space. An element V of uniformity ϑ is said to be symmetrical if $V=V^{-1}=\{(y, x):(x, y) \in V\}$. Since each $V \in \vartheta$ contains a symmetrical $W \in \vartheta$ and if $(x, y) \in W$ then x and y are both W and V-close and then one may assume that each $V \in \vartheta$ is symmetrical. When topological concepts are mentioned in the context of a uniform space (X, ϑ), they are naturally interpreted with respect to the topological space $(X, \tau(v))$.

Aamri and El Moutawakil [2] proved some common fixed point theorems for some new contractive or expansive maps in uniform spaces by introducing the notions of an E-distance. Some other authors proved fixed point theorems using this concept ([4],[8],[10],[11],[16],[17]). In [5],[6] and [19] authors used the order relation on uniform space.

Existence of fixed points in partially ordered metric spaces was first investigated in 2004 by Ran and Reurings [18] and then by Nieto and Lopez [15]. Further results in this direction under weak contraction conditions were proved, e.g. ([3],[7],[9],[12],[14]).

In this paper, we establish a fixed point theorem satisfying (ψ, φ)-contractive condition on ordered uniform space. We also give an example.

[^0]
2. Preliminaries

Definition 2.1. ([2]) Let (X, ϑ) be a uniform space. A function $p: X \times X \longrightarrow \mathbb{R}^{+}$is said to be an A-distance if for any $V \in \vartheta$, there exists $\delta>0$, such that $p(z, x) \leq \delta$ and $p(z, y) \leq \delta$ for some $z \in X$ imply $(x, y) \in V$.

Definition 2.2. ([2]) Let (X, ϑ) be a uniform space. A function $p: X \times X \longrightarrow \mathbb{R}^{+}$is said to be an E-distance if $(p 1) p$ is an A-distance,
(p2) $p(x, y) \leq p(x, z)+p(z, y)$ for all $x, y, z \in X$.
Example 2.3. ([2]) Let $X=[0,+\infty)$ and $p(x, y)=\max \{x, y\}$. The function p is an A-distance. Also, p is an E-distance.

The following lemma embodies some useful properties of E - distance.
Lemma 2.4. ([1],[2]) Let (X, ϑ) be a Hausdorff uniform space and p be an E-distance on X. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be arbitrary sequences in X and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} b e$ sequences in \mathbb{R}^{+}converging to 0 . Then, for $x, y, z \in X$, the following holds
(a) If $p\left(x_{n}, y\right) \leq \alpha_{n}$ and $p\left(x_{n}, z\right) \leq \beta_{n}$ for all $n \in \mathbb{N}$, then $y=z$. In partıcular, if $p(x, y)=0$ and $p(x, z)=0$, then $y=z$.
(b) If $p\left(x_{n}, y_{n}\right) \leq \alpha_{n}$ and $p\left(x_{n}, z\right) \leq \beta_{n}$ for all $n \in \mathbb{N}$, then $\left\{y_{n}\right\}$ converges to z.
(c) If $p\left(x_{n}, x_{m}\right) \leq \alpha_{n}$ for all $m>n$, then $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, ϑ).

Let (X, ϑ) be a uniform space equipped with E - distance p. A sequence in X is p-Cauchy if it satisfies the usual metric condition. There are several concepts of completeness in this setting.

Definition 2.5. ([1], [2]) Let (X, ϑ) be a uniform space and p be an E-distance on X.Then
i) X is said to be S-complete if for every p-Cauchy sequence $\left\{x_{n}\right\}$ there exists $x \in X$ with $\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=0$,
ii) X is said to be p-Cauchy complete if for every p-Cauchy sequence $\left\{x_{n}\right\}$ there exists $x \in X$ with $\lim _{n \rightarrow \infty} x_{n}=x$ with respect to $\tau(\vartheta)$,
iii) $f: X \longrightarrow X$ is p-continuous if $\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=0$ implies $\lim _{n \rightarrow \infty} p\left(f x_{n}, f x\right)=0$,
iv) $f: X \longrightarrow X$ is $\tau(\vartheta)$-continuous if $\lim _{n \rightarrow \infty} x_{n}=x$ with respect to $\tau(\vartheta)$ implies $\lim _{n \rightarrow \infty} f x_{n}=f x$ with respect to $\tau(\vartheta)$.

Remark 2.6. ([2]) Let (X, ϑ) be a Hausdorff uniform space and let $\left\{x_{n}\right\}$ be a p-Cauchy sequence. Suppose that X is S-complete, then there exists $x \in X$ such that $\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=0$. Lemma $2.4(b)$ then gives $\lim _{n \rightarrow \infty} x_{n}=x$ with respect to the topology $\tau(\vartheta)$. Therefore S-completeness implies p-Cauchy completeness.

We shall also state the following definition of altering distance function which is required in the sequel to establish a fixed point theorem in uniform space.

Definition 2.7. ([6]) A function $\psi:[0, \infty) \rightarrow[0, \infty)$ is called an altering distance function if the following properties are satisfied:
(i) $\psi(0)=0$,
(ii) ψ is continuous and monotonically nondecreasing.

3. Fixed Point Result

Theorem 3.1. Let (X, ϑ) be a Hausdorff uniform space," $\leq "$ be a partial order on X. Suppose p be an E-distance on S-complete space X. Let $T: X \rightarrow X$ be a p-continuous or $\tau(\vartheta)$-continuous nondecreasing mapping such that for all comparable $x, y \in X$ with

$$
\begin{equation*}
\psi(p(T x, T y)) \leq \psi(p(x, y))-\varphi(p(x, y)) \tag{1}
\end{equation*}
$$

where $\psi, \varphi:[0, \infty) \rightarrow[0, \infty)$ are altering distance functions.
If there exists $x_{0} \in X$ with $x_{0} \leq T\left(x_{0}\right)$ then T has a fixed point.

Proof. If $T\left(x_{0}\right)=x_{0}$ then the proof is finished. Suppose that $T\left(x_{0}\right) \neq x_{0}$. Since $x_{0} \leq T\left(x_{0}\right)$ and T is nondecreasing, we obtain by induction that

$$
x_{0} \leq T\left(x_{0}\right) \leq T^{2}\left(x_{0}\right) \leq T^{3}\left(x_{0}\right) \leq \cdots \leq T^{n}\left(x_{0}\right) \leq T^{n+1}\left(x_{0}\right) \leq \cdots .
$$

Put $x_{n+1}=T x_{n}$, for all $n \geq 1$. If there exists a positive integer N such that $x_{N}=x_{N+1}$, then x_{N} is a fixed point of T. Now, we may assume that $x_{n} \neq x_{n+1}$, for all $n \geq 0$.

From (1), we have for all $n \geq 0$,

$$
\begin{align*}
\psi\left(p\left(x_{n+2}, x_{n+1}\right)\right) & =\psi\left(p\left(T x_{n+1}, T x_{n}\right)\right) \\
& \leq \psi\left(p\left(x_{n+1}, x_{n}\right)\right)-\varphi\left(p\left(x_{n+1}, x_{n}\right)\right) \tag{2}
\end{align*}
$$

Together with that ψ is nondecreasing implies that the sequence $\left\{p\left(x_{n+1}, x_{n}\right)\right\}$ is monotone decreasing and hence there exists an $r \geq 0$ such that

$$
\lim _{n \rightarrow \infty} p\left(x_{n+1}, x_{n}\right)=r
$$

Letting $n \rightarrow \infty$ in (2) and using the continuity of ψ and φ, we obtain

$$
\psi(r) \leq \psi(r)-\varphi(r)
$$

which is a contradiction unless $r=0$. Hence,

$$
\lim _{n \rightarrow \infty} p\left(x_{n+1}, x_{n}\right)=0
$$

Similarly, we can show $\lim _{n \rightarrow \infty} p\left(x_{n}, x_{n+1}\right)=0$.
Next we show that $\left\{x_{n}\right\}$ is a p-Cauchy sequence. Assume $\left\{x_{n}\right\}$ is not p-Cauchy. Then there exists an $\varepsilon>0$ for which we can find subsequences $\left\{x_{m(k)}\right\}$ and $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ with $m(k)>n(k)>k$ such that

$$
\begin{equation*}
p\left(x_{n(k)}, x_{m(k)}\right) \geq \varepsilon \tag{3}
\end{equation*}
$$

Further, corresponding to $n(k)$, we can choose $m(k)$ in such a way that it is the smallest integer with $m(k)>n(k)$ and satisfying (3). Hence,

$$
p\left(x_{n(k)}, x_{m(k)-1}\right)<\varepsilon .
$$

Then we have

$$
\varepsilon \leq p\left(x_{n(k)}, x_{m(k)}\right) \leq p\left(x_{n(k)}, x_{m(k)-1}\right)+p\left(x_{m(k)-1}, x_{m(k)}\right)
$$

that is

$$
\varepsilon \leq p\left(x_{n(k)}, x_{m(k)}\right)<\varepsilon+p\left(x_{n(k)-1}, x_{n(k)}\right) .
$$

Taking the limit as $k \rightarrow \infty$, we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} p\left(x_{n(k)}, x_{m(k)}\right)=\varepsilon \tag{4}
\end{equation*}
$$

From (p2),

$$
p\left(x_{n(k)}, x_{m(k)}\right) \leq p\left(x_{n(k)}, x_{n(k)+1}\right)+p\left(x_{n(k)+1}, x_{m(k)+1}\right)+p\left(x_{m(k)+1}, x_{m(k)}\right)
$$

and

$$
p\left(x_{n(k)+1}, x_{m(k)+1}\right) \leq p\left(x_{n(k)+1}, x_{n(k)}\right)+p\left(x_{n(k)}, x_{m(k)}\right)+p\left(x_{m(k)}, x_{m(k)+1}\right)
$$

Taking the limit as $k \rightarrow \infty$ we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} p\left(x_{n(k)+1}, x_{m(k)+1}\right)=\varepsilon . \tag{5}
\end{equation*}
$$

From (1),

$$
\psi\left(p\left(x_{n(k)+1}, x_{m(k)+1}\right)\right) \leq \psi\left(p\left(x_{n(k)}, x_{m(k)}\right)\right)-\varphi\left(p\left(x_{n(k)}, x_{m(k)}\right)\right) .
$$

Letting $k \rightarrow \infty$ in the above inequality, using (4), (5) and the continuities of ψ and φ, we have

$$
\psi(\varepsilon) \leq \psi(\varepsilon)-\varphi(\varepsilon)
$$

which is a contradiction by virtue of a property of φ.
Hence $\left\{x_{n}\right\}$ is a p-Cauchy sequence. Since S-completeness of X, there exists a $z \in X$ such that

$$
\lim _{n \rightarrow \infty} p\left(x_{n}, z\right)=0
$$

Moreover, the p-continuity of T implies that $\lim _{n \rightarrow \infty} p\left(T x_{n}, T z\right)=0$. So, by Lemma 2.4 (a), $z=T z$. Using Remark 2.6, the proof is similar when T is $\tau(\vartheta)$-continuous.

Example 3.2. Let $X=[0,1]$ equipped with usual metric $d(x, y)=|x-y|$ and a partial order be defined as $x \leq y$ whenever $y \leq x$ and suppose

$$
\vartheta=\{V \subset X \times X: \Delta \subset V\} .
$$

Define the function p as $p(x, y)=y$ for all x, y in X and $T: X \rightarrow X$ defined by $T(t)=\frac{t^{2}}{1+t}$. Consider the functions φ and ψ defined as follows

$$
\varphi(t)=\frac{t}{1+t} \quad \text { and } \quad \psi(t)=t
$$

Definition of $\vartheta, \cap_{V \in \vartheta} V=\Delta$ and this show that the uniform space (X, ϑ) is Hausdorff uniform space. And also X is S-complete. On the other hand, p is an E-distance. T is p-continuous and φ and ψ are continuous, monotone nondecreasing. For $x=0.5$ and $y=0.3$, using usual metric, (1) does not hold. However, we have that for all $x, y \in X$

$$
\psi(p(T x, T y)) \leq \psi(p(x, y))-\varphi(p(x, y))
$$

And 0 is the fixed point of T.

References

[1] M. Aamri, S. Bennari, D. El Moutawakil, Fixed points and variational principle in uniform spaces, Siberian Electronic Mathematical Reports 3 (2006)137-142.
[2] M. Aamri, D. El Moutawakil, Common fixed point theorems for E-contractive or E-expansive maps in uniform spaces, Acta Mathematica Academiae Peadegogicae Nyiregyhaziensis 20 (2004) 83-91.
[3] M. Abbas, T. Nazir, S. Radenović, Common fixed point theorem for four maps in partially ordered metric spaces, Appl. Math. Lett. 23 (3)(2010) 1520-1526.
[4] M. Alimohammady, M. Ramzannezhad, On ϕ-fixed point for maps on uniform spaces, J. Nonlinear Sci. and Appl 4 (1) (2008) 241-143.
[5] I. Altun, Common fixed point theorems for weakly increasing mappings on ordered uniform spaces, Miskolc Mathematical Notes 12 (1) (2011)3-10.
[6] I. Altun, M. Imdad, Some fixed point theorems on ordered uniform spaces, Filomat, 23 (3) (2009) 15-22.
[7] S.C. Binayak, A. Kundu, $(\psi, \alpha, \beta)-$
[8] A.O. Bosede, On some common fixed point theorems in uniform spaces, General Mathematics 19 (2) (2011) 41-48.
[9] L.J. Ćirić, N. Cakić, M. Rajović, J.S. Ume,Monotone generalized nonlinaer contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2008 (2008) Article ID 131294.
[10] R. Chugh, M. Aggarwal, Fixed points of intimate mappings in uniform spaces, Int. Journal of Math. Analysis 6 (9) (2012) 429 436.
[11] V.B. Dhagat, V. Singh, S. Nath, Fixed point theorems in uniform spaces, Int. Journal of Math. Analysis 3 (4) (2009) 197-202.
[12] J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. 71 (2009) 3403-3410.
[13] M.S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bulletin of the Australian Mathematical Society 30 (1) (1984) 1-9.
[14] H.K. Nashine, B. Samet, Fixed point results for mappings satisfying (ψ, φ) - weakly contractive condition in partially ordered metric spaces, Nonlinear Anal. 74 (6) (2011) 2201-2209.
[15] J.J. Nieto, R.R. Lopez, Contractive mapping theorems in partially ordered sets applications to ordinary differantial equations, Order. 22 (2005), 223-239.
[16] M.O. Olatinwo, On some common fixed point theorems of Aamri and El MoutawakiliIn uniform spaces, Applied Mathematics E-Notes 8 (2008) 254-262.
[17] M.O. Olatinwo, Some common fixed point theorems for self-mappings in uniform space, Acta Mathematica Academiae Peadegogicae Nyiregyhaziensis 23 (2007) 47-54.
[18] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435-1443.
[19] D.Turkoglu, D. Binbasioglu, Some fixed-point theorems for multivalued monotone mappings in ordered uniform space, Fixed Point Theory Appl. 2011 (2011) Article ID 186237.

[^0]: 2010 Mathematics Subject Classification. Primary 54H25; Secondary 54E15
 Keywords. fixed point, uniform space, S-complete space, (ψ, φ)-contraction
 Received: 06 June 2013; Accepted: 25 June 2014
 Communicated by Ljubomir Ciric
 Email addresses: dturkoglu@gazi.edu.tr (Duran Turkoglu), vildan_ozturk@hotmail.com (Vildan Ozturk)

