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Abstract: Recently, bounded distributions have attracted attention. These distributions are frequently
used in modeling rate and proportion data sets. In this study, a new alternative model is proposed
for modeling bounded data sets. Parameter estimations of the proposed distribution are obtained via
maximum likelihood method. In addition, a new regression model is defined under the proposed
distribution and its residual analysis is examined. As a result of the empirical studies on real data
sets, it is observed that the proposed regression model gives better results than the unit-Weibull and
Kumaraswamy regression models.

Keywords: exponential-power distribution; point estimation; quantile regression; residuals; unit
exponential-power distribution

1. Introduction

The exponential-power (EP) distribution has been proposed by [1]. If T random
variable has EP distribution then its cumulative distribution function (cdf) and probability
density function (pdf) are respectively given by

K(t, α, β) = 1− e1−exp{αtβ} (1)

and
k(t, α, β) = αβeαtβ

eα(− log x)β

tβ−1e1−exp{αtβ}, (2)

where t ≥ 0, α > 0 is the scale parameter and β > 0 is the shape parameter. This
distribution is well-known in the literature because of its hazard rate function (hrf) with
bathtub shaped. It can be noticed that for β ∈ (0, 1), it has hrf with bathtub shaped.
Characterizations of the EP distribution was studied by [2].

Several generalizations of the EP distributions have been proposed. For instance, [3]
introduced the transmuted-EP (TEP) distribution with applications on the holes operation
on jobs made of iron sheet and breaking stress data sets. [4] introduced the generalization
of the complementary EP distribution and compared it with other transmuted generalized
distributions. [5] introduced the four-parameter generalized EP distribution which has
bimodal right-skewed and nearly symmetric pdf shapes.

In the recent years, many lifetime distributions are tranformed to bounded distri-
butions, defined on (0, 1) interval. Two transformation methods are commonly prefered
for this goal. These are X = exp(−T) and X = T/(T + 1) transformations. When the
random variable is defined on T ∈ R, the transformed random variable will be T ∈ (0, 1).
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As an example, [6] used X = exp(−T) transformation on the weighted-exponential (WE)
distribution and resulting distribution was called as log-WE distribution. Again, [7] used
the same transformation for the Bilal distribution and proposed the log-Bilal distribution
for extremely left/right skewed data sets defined on the interval (0, 1). Similarly, [8] used
X = T/(T + 1) transformation on the improved second-degree Lindley (ISDL) distribution
and resulting distribution was called as unit-ISDL distribution. These approaches have
been used many authors such as [9–19] and so on.

The presented work aims to develop a new sophisticated statistical model for bounded
data sets in (0, 1) interval. For this aim, we use X = exp(−T) transformation on the EP
distribution. The resulting cdf and pdf of the log-exponential-power (LEP) distribution are
given as

F(x, α, β) = e1−exp
{

α(− log x)β
}

, x ∈ (0, 1) (3)

and

f (x, α, β) =
αβ

x
eα(− log x)β

(− log x)β−1e1−exp
{

α(− log x)β
}

, x ∈ (0, 1) (4)

respectively, where α > 0 and β > 0 are the model parameters. This new unit model is
called as LEP distribution and after here, a random variable X is denoted as X ∼ LEP(α, β).
The associated hrf is given by

h(x, α, β) =
αβ

x
(

eexp
{

α(− log x)β
}
−1 − 1

) eα(− log x)β

(− log x)β−1, x ∈ (0, 1). (5)

If the β parameter is equal to one, then we have following simple cdf and pdf F(x, α, 1) =
e1−x−α

and f (x, α, 1) = αx−α−1e1−x−α
for x ∈ (0, 1) respectively. The possible shapes of the

pdf and hrf have been sketched by Figure 1. According to this Figure 1, the shapes of the
pdf can be seen as various shapes such as U-shaped, increasing, decreasing and unimodal
as well as its hrf shapes can be bathtub, increasing and N-shaped.
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Figure 1. The possible shapes of the pdf (left) and hrf (right).

Other parts of the study are as follows. Statistical properties of the LEP distribution
are given in Section 2. Parameter estimation method is presented in Section 3. Section 4 is
devoted to the LEP quantile regression model. Section 5 contains two simulation studies
for LEP distribution and the LEP quantile regression model. Empirical results of the study
are given in Section 6. The study is concluded with Section 7.

2. Some Distributional Properties of the LEP Distribution

The moments, order statistics, entropy and quantile function of the LEP distribution
are studied.
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2.1. Moments

The n-th non-central moment of the LEP distribution is denoted by E(Xn) which is
defined as

E(Xn) = n
∫ 1

0
xn−1[1− F(x)]dx = 1− n

∫ 1

0
xn−1e1−exp(α(− log(x))β)dx

By changing − log(x) = u transform we obtain

E(Xn) = 1 + n e
∫ ∞

0
e−n ue− exp(α uβ)du = 1 + n e

{∫ ∞

0
e−n u

[
1 +

∞

∑
i=1

(−1)i

i!
exp(i α uβ)

]
du

}

= 1 + n e
1
n
+

∞

∑
i=1

(−1)i

i!

∫ ∞

0
e−n u exp(i α uβ)du

= 1 + e + n e
∞

∑
i=1

∞

∑
j=0

(−1)i (α i)j

i!j!

∫ ∞

0
uβ je−n udu

= 1 + e + e
∞

∑
i=1

∞

∑
j=0

(−1)i (α i)j

i!j!
n−β j Γ(β j + 1)

Based on the first four non-central moments of the LEP distribution, we calculate
the skewness and kurtosis values of the LEP distributions. These measures are plotted in
Figure 2 against the parameters α and β.
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Figure 2. The skewness (left) and kurtosis (right) plots of LEP distribution.

2.2. Order Statistics

The cdf of i-th order statistics of the LEP distribution is given by

Fi:n(x) =
n

∑
k=0

(
n
k

)
F(x)k (1− F(x))n−k =

n

∑
k=0

n−k

∑
j=0

(−1)j
(

n
k

)(
n− k

j

)
F(x)k+j

Then

E(Xr
i:n) = r

∫ 1

0
xr−1[1− Fi:n(x)]dx

= 1− r
n

∑
k=0

n−k

∑
j=0

(−1)j
(

n
k

)(
n− k

j

) ∫ 1

0
xr−1e(k+j)[1−exp(α(− log(x))β)]dx

By changing − log(x) = u transform we obtain
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E(Xr
i:n) = 1 + r

n

∑
k=0

n−k

∑
j=0

(−1)j
(

n
k

)(
n− k

j

)
ek+j

∫ ∞

0
e−r ue−(k+j) exp(α uβ)du

= 1 + r
n

∑
k=0

n−k

∑
j=0

(−1)j
(

n
k

)(
n− k

j

)
ek+j

∫ ∞

0
e−r u

[
1 +

∞

∑
l=1

(−1)l (k + j)l

l!
exp(l α uβ)

]
du

= 1 + r
n

∑
k=0

n−k

∑
j=0

(−1)j
(

n
k

)(
n− k

j

)
ek+j

[
1
r
+

∞

∑
l=1

∞

∑
s=0

(−1)l (k + j)l (l α)s

l!s!

∫ ∞

0
e−r uuβ sdu

]

= 1 + r
n

∑
k=0

n−k

∑
j=0

(−1)j
(

n
k

)(
n− k

j

)
ek+j

[
1
r
+

∞

∑
l=1

∞

∑
s=0

(−1)l (k + j)l (l α)s

l!s!
× Γ(β s + 1)

rβ s+1

]

2.3. Quantile Function and Quantile LEP Distribution

Inverting Equation (3), the quantile function of the LEP distribution is given, we obtain

xτ(α, β) = e−
(

log(1−log τ)
α

)1/β

, (6)

where τ ∈ (0, 1). For the special case β = 1, we have xτ(α, 1) = (1− log τ)−1/α. The

median of the LEP distribution has been derived as x0.5(α, β) = exp
{( 0.5266

α

)1/β
}

. Further-
more, if random variable U follows the uniform distribution, the rv XU(α, β) ∼ LEP(α, β).

On the other hand, since the model has manageable quantile function, its pdf and cdf
can be re-parameterized easily. Let define µ = xτ(α, β) and α = log(1− log τ)(− log µ)−β.
Then the re-parameterized cdf and pdf are obtained as

G(y, β, µ, τ) = e1−(1−log τ)(log y/ log µ)β

(7)

and

g(y, β, µ, τ) =
β log(1− log τ)(1− log τ)(log y/ log µ)β

(− log y)β−1e1−(1−log τ)(log y/ log µ)β

y(− log µ)β
(8)

respectively, where y ∈ (0, 1), the µ ∈ (0, 1) is the quantile parameter, β > 0 is the shape
parameter and τ ∈ (0, 1) is known. Hereafter, the random variable Y will be called quantile
LEP (QLEP) random variable and we denote it with Y ∼ QLEP(β, µ, τ). For some selected
parameters values, the pdf shapes of the QLEP distribution are displayed in Figure 3. The
QLEP distribution has U-shaped, increasing and unimodal shapes.

2.4. Residual Entropy and Cumulative Residual Entropy

Entropy is used to measure uncertainty in different fields such as engineering and
natural sciences. The definition of the residual entropy is given by

E(X) = −
∫ ∞

0
F(x) log(F(x))dx. (9)

The another entropy measure, cumulative residual entropy is defined by

CE(X) = −
∫ ∞

0
F̄(x) log(F̄(x))dx. (10)
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After some simple algebra, using u = − log(x) transformation and Taylor expansion
for LEP(α, β) we have

E(X) =
∞

∑
i,j=0

(−1)iα(i + 1)jΓ(βj + 1)
i!j!

(11)

and

CE(X) =
∞

∑
i,j=0

ei+1 (i + 1)j − ei+2(i + 2)j

j!(i + 1)

[
1 +

∞

∑
k=1

(jα)k Γ(β k + 1)
k!

]
(12)
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Figure 3. The pdf shapes of the QLEP distribution.

3. Procedure of the Maximum Likelihood for the Parameter Estimation

The maximum likelihood estimators (MLEs) of the LEP distribution has been derived.
It has been worked on the case when both α and β are unknown.

Let x1, x2, . . . , xn random sample of size n from the LEP distribution and let
Θ = (α, β)T be the parameter vector. Then, the log-likelihood function is given by

`(Θ) = n + n log α + n log β + α
n

∑
i=1

(− log xi)
β + (β− 1)

n

∑
i=1

log(− log xi)−
n

∑
i=1

eα(− log xi)
β

. (13)

Then, differentiating (13), the normal equations are obtained by

∂`(Θ)

∂α
=

n
α
+

n

∑
i=1

(− log xi)
β −

n

∑
i=1

(− log xi)
βeα(− log xi)

β

= 0

and

∂`(Θ)

∂β
=

n
β
+ α

n

∑
i=1

log(− log xi)(− log xi)
β − α

n

∑
i=1

log(− log xi)(− log xi)
βeα(− log xi)

β

= 0.

Above equation systems have no explicit solutions. To obtain the α̂ and β̂, the numeri-
cal approaching should be needed and they have to be solved via numerical methods. The
Newton-Raphson and quasi-Newton algorithms can be used for this purpose. However,
Equation (13) can be also optimized directly by the special functions in some well-known
software such as R (constrOptim and optim and maxLik functions), S-Plus and Matlab.
These functions use the numerical optimization methods for solving them. When the
log-likelihood is directly optimized, one should carefully choose the initial values and
remove the constraints of parameters [20].
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The observed information matrix plays an important role in order to obtain the
standard errors and asymptotic confidence interval of the MLEs. Based on the regularity
conditions, the Θ̂ MLEs have approximately the bivariate normal distribution with mean
M = (α, β) and covariance matrix I−1, where I is the observed information matrix with
the following elements

I = −


∂2

∂α2 `(Θ)
∂2

∂α∂β
`(Θ)

∂2

∂α∂β
`(Θ)

∂2

∂β2 `(Θ)


∣∣∣∣∣∣∣∣
Θ=(α̂,β̂)

.

The components of the I can be given by the following derivations

∂2

∂α2 `(Θ) = − n
α2 −

n

∑
i=1

(− log xi)
2βeα(− log xi)

β

,

∂2

∂α∂β
`(Θ) =

n

∑
i=1

log(− log xi)(− log xi)
β

−
n

∑
i=1

log(− log xi)(− log xi)
βeα(− log xi)

β
[
1 + α(− log xi)

β
]

and

∂2

∂β2 `(Θ) = − n
β2 + α

n

∑
i=1

log2(− log xi)(− log xi)
β

− α
n

∑
i=1

log(− log xi)
[
log(− log xi)(− log xi)

βeα(− log xi)
β
(

1 + α(− log xi)
β
)]

.

The standard errors of the estimated parameters are obtained by the inverse of I, say
I−1. So, the asymptotic confidence intervals of the parameters can be easily constructed by

α̂± zζ/2sα̂ and β̂± zζ/2s
β̂
,

where sα =
√

I−1
11 , sβ =

√
I−1
22 and zζ/2 is the upper ζ/2 th percentile of N(0, 1) distribution.

4. The New Quantile Regression Model Based on the QLEP Distribution for the
Unit Response

The regression models are used to explain the relation between dependent and inde-
pendent variables. When the dependent variable is on (0, 1) interval, the beta regression
model by [21] is usually used. The idea of the beta regression model is based on the
re-parameterization of the mean and variance functions. Similar idea has been used by
several authors such as [6,8,17,22,23]. These studies are constructed on the conditional
mean modeling.

The other possible idea is to model the dependent variable with conditional quantile
function as in the quantile regression model pioneered by [24]. Ref. [25] introduced the
Kumaraswamy quantile regression model for the dependent variables on the (0, 1) interval.
The presented idea in the study of [25] has been applied to different probability distributions
by [9,11,12,14,26–29].

Following the idea of [25], we propose QLEP quantile regression model. Let Y1, Y2, . . . ,
Yn be n random variables from the QLEP distribution denoted by Y ∼ QLEP(β, µi, τ)
where µi and β unknown parameters and τ is known. Assume that y1, y2, . . . , yn are the
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realizations of the random variables, Y1, Y2, . . . , Yn. Then, the QLEP regression model is
given as follows

g(µi) = xiβ
T ,

where β =
(

β0, β1, β2, . . . , βp
)T is the unknown regression parameter vector,

xi =
(
1, xi1, xi2, xi3, . . . , xip

)
is the known ith vector of the covariates, and g(·) is the link

function which connects covariates with conditional quantile of the response variable. The
logit link function is preferred by the reason that the response variable is on (0, 1) interval.
The definition of the logit link function is

g(µi) = log
(

µi
1− µi

)
.

If the parameter τ = 0.5, we model the median of the dependent variable with known
independent variables which is called as QLEP median regression model.

4.1. The MLEs of the Model Parameters

Let Y1, Y2, . . . , Yn be n independent random variables from Yi ∼ QLEP(β, µi, τ) where

µi =
exi β

T

1 + exi β
T (14)

is the inverse of the logit link function and τ is the known. The Φ =
(

β, βT
)T

be unknown
parameter vector with p + 2. Then, putting (14) in (8), the log-likelihood function of the
QLEP regression model is obtained as

`(Φ) = n + n log β + n log[log(1− log τ)] + log[(1− log τ)]
n

∑
i=1

(
log yi
log µi

)β

+ (β− 1)
n

∑
i=1

log(− log yi)−
n

∑
i=1

log yi − β
n

∑
i=1

log(− log µi)−
n

∑
i=1

(1− log τ)

(
log yi
log µi

)β

. (15)

The score equations of the Equation (15) are given by

∂`(Φ)

∂β
=

n
β
+ log[(1− log τ)]

n

∑
i=1

(
log yi
log µi

)β

log
(

log yi
log µi

)
+

n

∑
i=1

log(− log yi)−
n

∑
i=1

log(− log µi)

− log[(1− log τ)]
n

∑
i=1

(
log yi
log µi

)β

log
(

log yi
log µi

)
(1− log τ)

(
log yi
log µi

)β

(16)

and

∂`(Φ)

∂βr
= −β log[(1− log τ)]

n

∑
i=1

(
log yi
log µi

)β 1
µi log µi

∂µi
∂βr
− β

n

∑
i=1

1
µi log µi

∂µi
∂βr

+ β log(1− log τ)
n

∑
i=1

(
log yi
log µi

)β

(1− log τ)

(
log yi
log µi

)β
1

µi log µi

∂µi
∂βr

, (17)

where ∂µi/∂βr = µi(1− µi)xir, i = 1, 2, . . . , n, r = 1, . . . , p. Above score function consist of
the nonlinear function according to model parameters. Therefore, they should be solved
by the numerical methods. One may find these solutions via direct maximization of
the (15) using software such as R software. The asymptotic distribution of the (Φ̂−Φ) is
multivariate normal Np+2

(
0, I−1(Φ)

)
, where I−1(Φ) is the expected information matrix.

The (p + 2× p + 2) observed information matrix can be used for the I−1(Φ̂).
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4.2. Model Validity for the Fitting

The model validity is examined via the residual analysis. The randomized quantile
residual (rqr) was proposed by [30]. The ith rqr is calculated by

r̂i = Φ−1[G(yi, β̂, µ̂i, τ)
]
,

where G(y, β, µ, τ) is the cdf of the QLEP distribution given by (7), Φ−1(x) is the qf of
N(0, 1), and µ̂i is defined by (14). If the model has good explanatory power, the the rqrs
are distributed as the N(0, 1) model. The second residual is Cox-Snell residual [31] which
is calculated by

êi = − log
[
1− G(yi, β̂, µ̂i, τ)

]
.

As in rqr, the model is valid, once the êi follows the standard exponential model.

5. Simulation Studies

In this section, we discuss on the simulation studies to see the efficiency of the MLEs
of the LEP distribution under different simulation scenarios. Also, we perform another
simulation study for the proposed regression model to discuss the asymptotic behaviours
of the MLEs of the QLEP quantile regression model. The R software is used to implement
the simulation studies.

5.1. Simulation Results for the MLEs of the Proposed Distribution

We focus on the behaviours of the MLEs of the LEP distribution. For this aim, four sim-
ulation studies are conducted and the results of these simulation studies are summarized
graphically. We have the following settings for the simulation studies. The N = 1000 sam-
ples of size n = 20, 25, . . . , 1000 from a random variable following the LEP distribution are
generated. Four scenarios are considered. The (6) has been used for the random numbers.
By setting ε = α or β, the related bias and mean square error (MSE) are calculated by

Biasε(n) =
1
N ∑N

i=1 (εi − ε̂i), MSEε(n) =
1
N ∑N

i=1 (εi − ε̂i)
2,

respectively. In addition, for the behaviours of the 95% confidence intervals of the MLEs,
we calculate the empirical coverage length (CL) and coverage probability (CP) which are
defined by

CLε(n) = 1
N ∑N

i=1 3.9198sε̂i ,

and

CPh(n) = 1
N ∑N

i=1 I
(

ĥi − 1.9599sĥi
< h < ĥi + 1.9599sĥi

)
respectively, where I(·) is the indicator function and the sε̂i =

(
sα̂i , sβ̂i

)
are the standard

errors of the MLEs which are calculated by the inverse of the observed information matrix.

5.1.1. Scenario I

The true parameter values for the scenario-I is determined as α = 0.5 and β = 0.5.
The estimated means, MSEs and biases for each sample size are displayed in Figure 4. The
estimated CLs and CPs are also displayed in Figure 5. From these results, we conclude that
the estimated biases and MSEs are near the zero. The estimated means approach the true
values of each parameters. As expected, the CPs are near the desired value, 0.95 for all
sample sizes. The CLs decrease when the sample sizes increase. In the light of these results,
it is verified that the consistency property of the MLE is valid for the LEP distribution.



Mathematics 2021, 9, 2634 9 of 19

0 200 400 600 800 1000

0
.4

9
0

0
.4

9
5

0
.5

0
0

0
.5

0
5

0
.5

1
0

0
.5

1
5

0
.5

2
0

0
.5

2
5

n

m
e
a

n

0 200 400 600 800 1000

−
0

.0
1
0

−
0
.0

0
5

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

n

B
ia

s

0 200 400 600 800 1000

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

0
.0

1
2

n

M
S

E

0 200 400 600 800 1000

0
.4

8
0
.5

0
0
.5

2
0
.5

4
0
.5

6

n

m
e
a

n

0 200 400 600 800 1000

−
0
.0

2
0
.0

0
0
.0

2
0
.0

4
0
.0

6

n

B
ia

s

0 200 400 600 800 1000

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

n

M
S

E

Figure 4. The results of the α (top) and β (bottom) parameters for the simulation-I.
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Figure 5. The empirical CLs and CPs of the MLEs for the scenario-I.

5.1.2. Scenario II

The true parameters are determined as α = 2 and β = 2 for the scenario-II and the
results are summarized in Figures 6 and 7. Since the results of the scenario-II is the same
with scenario-I, the interpretation of the simulation results are omitted. These results also
verify the suitability of the MLE method for the LEP distribution.
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Figure 6. The results of the α (top) and β (bottom) parameters for the simulation-II.
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Figure 7. The empirical CLs and CPs of the MLEs for the scenario-II.

5.1.3. Scenario III

The true parameter values for the scenario-III is determined as α = 0.5 and β = 2. The
simulation results are displayed in Figures 8 and 9. The results are similar with the results
of the scenario-I. Therefore, the interpretation of the results are omitted. As in previous
simulation studies, these results verify the suitability of the MLE method for the proposed
distribution.
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Figure 8. The results of the α (top) and β (bottom) parameters for the simulation-III
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Figure 9. The empirical CLs and CPs of the MLEs for the scenario-III.

5.1.4. Scenario IV

For the last scenario, the true values of the parameters are determined as α = 2 and
β = 0.5. Figures 10 and 11 give the results of the simulation study graphically. General
result of these simulation studies is that the MLE method works well to estimate the
unknown parameter of the LEP distribution.
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Figure 10. The results of the α (top) and β (bottom) parameters for the simulation-IV.
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Figure 11. The empirical CLs and CPs of the MLEs for the scenario-IV.

5.2. Comparison of SD and SE

Here, we compare the average of the standard errors (SEs) and standard deviations
(SDs) of the estimated parameters to evaluate the unbiasedness of the SEs. For this aim,
the SDs and SEs are calculated for four different scenarios and the results are graphically
summarized in Figures 12–15. If the SEs are unbiased, we expect to see that SDs and SEs
should be near to each other. As seen from Figures 12–15, the values of the SDs and SEs are
near to each other. The simulation results verify the unbiasedness of the SEs.
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Figure 12. Comparison of SD and SE for the scenario-I.
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Figure 13. Comparison of SD and SE for the scenario-II.
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Figure 14. Comparison of SD and SE for the scenario-III.
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Figure 15. Comparison of SD and SE for the scenario-IV.

5.3. Simulation Studies for the Proposed Regression Model

We give the simulation study in order to evaluate MLEs of the parameters of the QLEP
regression model based on the bias and MSE calculations. For the varying sample size n,
known τ, true β, and generated covariates values, the values of the unit response variable
have been obtained with
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yi = exp
(
− log(1− log ui)

αi

)1/β

,

where ui ∼ U(0, 1) and αi = log(1− log τ)(− log µi)
−β for i = 1, 2, . . . , n.

In this simulation study, it has been considered as replication number N = 1000, sam-
ple sizes n = 25, 50, 100, 250, 500, τ = 0.25, 0.50, 0.75, β = 5 with the following regression
structure

logit(µi) = β0 + β1zi1, i = 1, 2, . . . , n,

where β0 = 0.5, β1 = 1 and zi1 ∼ N(0, 1).
Table 1 shows the simulation results for the QLEP regression model. As seen from

these results, the empirical CLs decrease while the sample size increases as well as the
empirical CPs are around the 0.95 value. All biases are close zero value as wel as all MSEs
tend to zero value at the same time.

Table 1. The empirical biases, MSE, 95% CP, and 95% CL for the QLEP regression model with τ = 0.25, 0.50 and 0.75.

τ = 0.25

n Bias-β0 Bias-β1 Bias-β MSE-β0 MSE-β1 MSE-β CL-β0 CL-β1 CL-β CP-β0 CP-β1 CP-β

25 0.0100 0.0020 0.4837 0.0013 0.0021 1.3551 0.1255 0.1636 3.7139 0.8900 0.9250 0.9440
50 0.0030 0.0023 0.2659 0.0007 0.0006 0.5236 0.0957 0.0894 2.4852 0.9300 0.9290 0.9430

100 0.0028 0.0017 0.0914 0.0003 0.0003 0.1972 0.0671 0.0614 1.6859 0.9420 0.9440 0.9560
250 0.0003 0.0007 0.0360 0.0001 0.0001 0.0728 0.0430 0.0401 1.0470 0.9470 0.9460 0.9530
500 0.0001 0.0005 0.0227 0.0001 0.0001 0.0385 0.0303 0.0293 0.7375 0.9480 0.9390 0.9460

τ = 0.5

n Bias-β0 Bias-β1 Bias-β MSE-β0 MSE-β1 MSE-β CL-β0 CL-β1 CL-β CP-β0 CP-β1 CP-β

25 0.0007 0.0066 0.4996 0.0020 0.0020 1.2113 0.1713 0.1595 3.7157 0.9350 0.9100 0.9610
50 0.0003 0.0015 0.2131 0.0011 0.0008 0.4604 0.1264 0.1134 2.4639 0.9410 0.9450 0.9550

100 -0.0011 0.0013 0.1285 0.0006 0.0003 0.2129 0.0920 0.0696 1.6977 0.9440 0.9280 0.9530
250 -0.0008 0.0006 0.0531 0.0002 0.0001 0.0742 0.0582 0.0439 1.0503 0.9490 0.9610 0.9570
500 −0.0003 0.0002 0.0273 0.0001 0.0001 0.0363 0.0413 0.0301 0.7368 0.9400 0.9500 0.9470

τ = 0.75

n Bias-β0 Bias-β1 Bias-β MSE-β0 MSE-β1 MSE-β CL-β0 CL-β1 CL-β CP-β0 CP-β1 CP-β

25 -0.0117 0.0038 0.5318 0.0057 0.0016 1.4534 0.2782 0.1340 3.7260 0.8990 0.9050 0.9430
50 −0.0069 0.0050 0.2627 0.0026 0.0008 0.5056 0.1984 0.1017 2.4788 0.9340 0.9010 0.9440

100 -0.0025 0.0018 0.0973 0.0013 0.0003 0.1987 0.1440 0.0700 1.6731 0.9430 0.9450 0.9480
250 -0.0018 0.0009 0.0533 0.0005 0.0001 0.0714 0.0913 0.0406 1.0400 0.9500 0.9470 0.9510
500 −0.0015 0.0003 0.0310 0.0003 0.0001 0.0378 0.0644 0.0317 0.7336 0.9400 0.9480 0.9460

6. Applications

The presented section aims to show the importance of the modeling ability of both
LEP distribution and QLEP regression model, based on the real data sets. The maximized
log-likelihood value ˆ̀, Akaike Information Criteria (AIC), Bayesian information criterion
(BIC), Cramer-von-Mises, (W∗), Anderson-Darling (A∗) and Kolmogorov-Smirnov (KS)
goodness of-fit statistics have been calculated based on all distribution models to choose
the optimum model. It is chosen as the optimum model the one which has the smaller the
values of the AIC, BIC, W∗ and A∗ statistics and the larger the values of ˆ̀. The calculations
have been obtained by the maxLik and goftest functions of the R software. The details are
in the following subsections.

6.1. Real Data Application for the Univariate Data Modeling

The data includes in the flood levels for the Susquehanna River at Harrisburg, Penn-
sylvania, and represents the maximum flood level (in millions of cubic feet per second).
These data are: 0.654, 0.613, 0.315, 0.449, 0.297, 0.402, 0.379, 0.423, 0.379, 0.3235, 0.269, 0.740,
0.418, 0.412, 0.494, 0.416, 0.338, 0.392, 0.484, 0.265. Recenly, this data set has been analyzed
by [32,33].
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Well known unit distributions in the literature have been compared with our distribu-
tion under the MLE method. Their densities have been given as follows.

• Beta distribution:

fBeta(x, α, β) =
1

B(α, β)
xα−1(1− x)β−1, x ∈ (0, 1),

and fBeta(x, α, β) = 0 for x 6∈ (0, 1), where α > 0, β > 0, and B(α, β) is the standard
beta function.

• Kumaraswamy (Kw) distribution [34]:

fKw(x, α, β) = αβxα−1(1− xα)β−1, x ∈ (0, 1),

and fKw(x, α, β) = 0 for x 6∈ (0, 1), where α > 0 and β > 0.
• Johnson SB distribution [35]:

fSB(x, α, β) =
β

x(1− x)
φ

[
β log

(
x

1− x

)
+ α

]
, x ∈ (0, 1),

and fSB(x, α, β) = 0 for x 6∈ (0, 1), where α ∈ R, β > 0, and the φ(x) is the pdf of the
standard normal distribution.

• Unit Birnbaum Saunders (UBS) distribution [36]:

fUBS(x, α, β) =
1

2xαβ
√

2π

√− β

log x
+

√(
− β

log x

)3
e

1
2α2

(
log x

β +
β

log x +2
)

,

and fUBS(x, α, β) = 0 for x 6∈ (0, 1), where α > 0 and β > 0.

Table 2 shows the results of data analysis. The standard errors are in (·) and p-values
of the KS tests are in [·] From this Table, we can say that the LEP distribution is the best
model based on above comparison criteria.

Table 2. The results of the fitted models for the maximum flood level data.

Model α̂ β̂ ˆ̀ AIC BIC A∗ W∗ KS [p-Value]

LEP 0.6593 2.9194 16.5800 −29.1593 −28.4534 0.2923 0.0498 0.1366 [0.8494]
(0.1128) (0.5537)

Johnson SB 0.6143 1.9261 14.2629 −24.5257 −22.5342 0.6932 0.1154 0.1935 [0.4421]
(0.2438) (0.3035)

Beta 6.7568 9.1114 14.0622 −24.1244 −22.1330 0.7327 0.1236 0.1988 [0.4082]
(2.7299) (3.4697)

UBS 0.3783 0.8374 12.6784 −21.3568 −19.3653 1.0516 0.1898 0.2286 [0.2470]
(0.0598) 0.0696

Kw 3.3632 11.7892 12.8662 −21.7324 −19.7409 0.9322 0.1636 0.2109 [0.3359]
(0.6143) (5.4906)

Figure 16 displays the estimated pdfs and cdfs of all distributions according to results
of the fitted models. The probability-probability (PP) Quantile-Quantile (QQ) plots of
the fitted LEP distribution have been given by Figure 17. All these plots indicates the
acceptable fitting of the LEP distribution for the data set.
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Figure 16. Estimated pdfs (left) and cdfs (right) for the application models.
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Figure 17. The PP (left) and QQ plots (right) of the LEP distribution for the fitted model.

The profile log-likelihood (PLL) functions are plotted in Figure 18 for the parameters
of the QLEP distribution. According to Figure 18, the estimated parameters are maximizers
of the function in (13).
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Figure 18. The plots of the PLL functions.

6.2. Quantile Regression Application

We use the Better Life Index (BLI) data set measured in the year of 2017, available at
https://stats.oecd.org/index.aspx?DataSetCode=BLI (accessed on 7 June 2021), to demon-

https://stats.oecd.org/index.aspx?DataSetCode=BLI
https://stats.oecd.org/index.aspx?DataSetCode=BLI
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strate the practicality of the QLEP regression model. We compare the QLEP model with
two quantile regression models: Kumaraswamy and unit-Weibull. Homicide rate, yi, is
considered as dependent variable. The covariates are: employment rate xi1, personal
earnings xi2 and labour market insecurity xi3. The goal of the presented application is to
explain the variability of the homicide rate with these covariates.

The estimated parameters as well as model selection criteria of the quantile regression
models for τ = 0.5 are given in Table 3. The calculated AIC and BIC values show that
the QLEP regression model is better than the Kumaraswamy and unit-Weibull regression
models for the considered data set since the proposed model has the lowest value of these
statistics. According to estimated regression parameters, β2 is found statistically significant
at % 5 level for three regression models. It means that when the personal earnings increase,
the homicide rate decreases. It is an expected outcome. Because, the countries having
high earnings provide better life conditions and it decreases the homicide rate. It is widely
documented that the income inequality leads to increased homicide rate [37].

Table 3. Estimated parameters and model selection criteria of the fitted quantile regression models

Parameters
QLEP Kumaraswamy Unit-Weibull

Estimates SEs p-Values Estimates SEs p-Values Estimates SEs p-Values

β0 −1.794 2.097 0.196 0.149 2.484 0.476 -2.938 2.351 0.106
β1 −0.025 0.031 0.208 −0.034 0.035 0.167 -0.004 0.034 0.456
β2 −0.026 0.014 0.031 −0.048 0.011 <0.001 -0.034 0.015 0.010
β3 −0.004 0.040 0.463 −0.048 0.051 0.174 0.015 0.046 0.369
β 4.426 0.661 - 1.004 0.121 - 5.625 0.778 -

AIC −223.970 −209.571 −219.351
BIC −215.782 −201.383 −211.163

Accuracy of the fitted regression models are evaluated by means of the rqrs. As
mentioned before, when the fitted model is preferable, the rqrs should be distributed as
N(0, 1). Figure 19 shows the QQ plots of the rqrs for all fitted regression models. From
these figures, one can conclude that the QLEP model is more appropriate model than others
because the plotted points for the LEP regression models is more closer the diagonal line
than those of others.
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Figure 19. QQ plots of the rqrs: (left) QLEP, (middle) Kumaraswamy an (right) unit-Weibull.

Also, Table 4 lists the KS test results to verify that whether the randomized quantile
residuals are distributed as standard normal distribution. Obviously, all p-values are higher
than 0.05. So, randomized quantile residuals are normally distributed for all regression
models. However, the p-value of the QLEP regression model is higher than those of other
models. It is also evidence for the superiority of the QLEP regression model over two
other models.
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Table 4. KS test results for the rqrs of the models

KS QLEP Kumaraswamy Unit-Weibull

Test statistic 0.097 0.148 0.102
p-value 0.824 0.335 0.782

7. Conclusions

In this study, a quantile regression model is defined under the proposed distribution.
The parameter estimates of the proposed regression model are obtained by the maximum
likelihood estimation method, and the efficiency of the estimation method is examined
via simulation study. Homicide rate of the OECD countries are analyzed by the proposed
approach as well as unit-Weibull and Kumaraswamy regression models. The residual
analysis of the fitted regression models are performed with the randomized quantile resid-
uals. Based on the residual analysis and model selection criteria, the proposed approach is
selected as a best model among others. Additionally, the distance-based model selection
criteria is used in the study. However, the likelihood-based model selection methods are
more effective than the distance-based methods [38]. So, the comparison of the LEP model
with existing bounded distributions can be performed under the likelihood-based model
selection approaches. We plan this issue as a future work of the presented study. Moreover,
we plan to develop an extension of the proposed model when the response variable is
time-dependent such as monthly incidence ratio of the corona-virus disease or weekly car
accident involving death ratio.
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