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ABSTRACT

Forest inventories require up-to-date data on dominant tree height and stand top height from forest sample plots. These 
data are used to characterize the vertical structure of forests, providing a baseline for volume and yield tables as well 
as many other biomass studies. Obtaining height information through ground measurement is laborious, costly, and 
time-consuming. The aim of this study is to estimate stand top heights of the Artvin-Hatila Valley’s forests using freely 
available laser scanning (LiDAR) data from the ICESat-2 satellite for the first time in Turkey. For this purpose, the dominant 
tree heights, traditionally measured by digital hypsometer in 52 sample plots, were evaluated by stand types and compared 
with the ICESat-2 canopy data. Then, two data sets were modeled using the Convolutional Neural Network (CNN) and 
simple regression methods. The model accuracies were evaluated with correlation (Pearson’s R), coefficient of determina-
tion (R2), and root mean squared error (RMSE) using ground-based data. The results showed that the CNN-based model 
performed better than the linear regression model in height estimation. Its R, R2, and RMSE values were .82, .68, and 4.2 m, 
respectively. As for stand types, broadleaves-dominated, mature, and fully covered stands seem more appropriate for top 
height modeling with spaceborne LiDAR data. Degraded, coniferous, and young stands, as well as non-forest areas, barely 
allow accurate top height estimations due to their complex canopy surfaces and small openings among trees. Given the 
promising results, we conclude that satellite-based LiDAR systems provide opportunities to forest professionals as a free 
auxiliary data source for operational forest management in Turkey.

Keywords: Artvin, canopy height model, forest management and planning, ICESat-2, light detection and ranging, the Hatila 
Valley National Park, remote sensing

Introduction

Forest ecosystems cover a large number of carbon pools (aboveground, belowground, deadwood, litter, and 
soil organic carbon) considering the global carbon cycle. Structural parameters of forests play a significant 
role in determining biomass and carbon storage estimation (Dorado-Roda et al., 2021). Forest canopy and its 
height, in this sense, have a high relationship with the level of aboveground biomass (AGB) in forest ecosystems 
(Fayad et al., 2021; Tolunay, 2019). 

Forests cover about 31% of the world’s terrestrial land. It is one of the indicators for the sustainable develop-
ment goals (SDG) under 15 – Life on Land which focuses on the protection and sustainable management of 
forests biodiversity (FAO and UNEP, 2020). Monitoring of forest dynamics contributes to early recognition 
problems that forest professionals and decision-makers can solve. Remote sensing (RS) satellites have been 
widely used for large-scale monitoring of forest fires, delineating burned areas (Polat & Kaya, 2021; Sabuncu 
& Ozener, 2019), estimating carbon stocks in forest ecosystems (Vatandaslar & Abdikan, 2021), and modeling 
forest stand height (Ozdemir, 2013). To model the stand height, several RS tools exist including interferomet-
ric SAR (InSAR) (Balzter  et  al., 2007), airborne LiDAR (Gülçin, 2021; Patenaude  et  al., 2005), and unmanned 
aerial systems (UAV) (Lisein et al., 2013). 

Ice, Cloud, and land Elevation Satellite (ICESat), as the first spaceborne laser altimeter (Geoscience Laser Altimeter 
System GLAS), provided canopy height data globally. It operated from 2003 to 2009 and was used for canopy height 
and AGB estimations. Lefsky et al. (2005) studied over coniferous and deciduous forest types of USA and Brazil. They 
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estimated RMSE values between 4.85 and 12.66 m over the USA. The coeffi-
cient of determination (R2) was 73% and RMSE for forest biomass was about 
58 Mg/ha between the field-based measurements and ICESat-derived can-
opy heights. The ICESat-2 that has been launched in 2018 extends the space-
borne LiDAR observations worldwide. ICESat-2 mission produces timely 
information on various surface types, and among them, land/vegetation 
elevation (ATL08) is used for characterizing the vertical structure of forests 
and other landscapes. For example, Dandabathula et al. (2021) estimated 
building heights from ICESat-2 and calculated accuracy levels ranged 
from 8 cm to 17 cm. In another study, Yu et al. (2021) estimated the can-
opy height of mangroves over Australia. They used terrestrial LiDAR data 
for validation and calculated 2.5 m RMSE with an R2 value of 66%. In these 
studies, it is also noticed that weak beams provided less accurate results 
than strong beams. Both ICESat-1 and ICESat-2 can provide spatiotempo-
ral changes of forest height. Sun et al. (2020), for example, extracted the 
changes in forest height from 2005 and 2019 over China and determined a 
significant increase in forest canopy height. Nandy et al. (2021) combined 
ICESat-2 and Sentinel-1 data to predict deciduous forest canopy in a sub-
tropical region characterized by the humid climate. They applied a ran-
dom forest approach and predicted canopy height values with an RMSE 
of 1.15 m and R2 of 84%. These studies show that spaceborne LiDAR data 
provide important opportunities to model and monitor forests’ biophysical 
structure which is strongly correlated with many forest-related parameters 
such as aboveground biomass, stand top height, and growing stock. 

The aim of this study is to analyze the performance of the ATL08 prod-
uct of the ICESat-2 satellite for forest canopy height estimation in a 
multi-species forest composed of coniferous and deciduous trees in NE, 
Turkey. This is the first study using satellite-based LiDAR data for for-
estry purposes in Turkey. Therefore, the outputs of the present study 
are thought to be useful for national forestry studies including forest 
inventories, aboveground biomass calculations, as well as forest yield 
and increment estimations.

Material and Methods

Study Area
The Hatila Valley National Park is a protected area located in Artvin, NE 
Turkey (Figure 1). The area coverage of the National Park is 17,000 ha, 

which is about 80% forested. The main tree species in the forest are spruce 
(Picea orientalis), fir (Abies nordmanniana ssp. nordmanniana), Scots pine 
(Pinus sylvestris), hornbeam (Carpinus sp.), European hophornbeam (Ostrya 
carpinifolia), and oak (Quercus petraea). Biodiversity is very rich in the study 
area. The Hatila Valley National Park has a mountainous landscape. The 
mean terrain slope rate is more than 60%. That is why field surveys are 
hard to conduct on the ground. In general, the climate is a transition-type 
between the Black Sea and terrestrial climate characteristics. However, 
many Mediterranean trees and shrub elements can grow in the area 
due to favorable microclimate along the bottom of the V-shape valleys. 
For example, Greek strawberry trees (Arbutus andrachne) and Stone pine 
(Pinus pinea) are frequent on lowlands. It makes the Hatila Valley special in 
terms of biodiversity conservation value. The Hatila Valley’s forests have 
been strictly protected under the National Park statute since 1994.

Data Source
In the present study, we used both strong and weak beams from the 
ATL08 dataset of ICESat-2. The ICESat-2 satellite was developed by NASA 
for the purposes of determining and monitoring water survey, ice thick-
ness, vegetation height, and land elevation. It started collecting data on 
September 15, 2018. Moving 500 km above the ground and in a polar 
orbit, the ICESat-2 satellite carries the Advanced Topographic Laser 
Altimeter System (ATLAS) Lidar measuring system (ICEsat-2, 2021). The 
ICESat-2 uses a micropulse, that is, a multibeam approach. Each beam 
has strong and weak beam modes. The ATLAS system emits three pairs 
of beams 3.3 km apart. The distance between the rays in each pair is 
90 m (Markus et al., 2017). Each beam has a footprint of 17 m in diam-
eter and the distance between both footprints is 70 cm. 

Methodology

The relationship between tree height and ICESat-2 ATL08 data was 
investigated (Neuenschwander et al., 2020). ICESat-2 canopy data 
(LiDAR points) dated August 30, 2020, and October 29, 2020, were 
downloaded via openaltimetry.org (Khalsa et al., 2020; Openaltimetry, 
2021). Their coordinate system was converted to UTM with WGS84 
datum. Thus, they handled in Geographic Information System environ-
ment in accordance with the stand-types map which was in vector data 
type with polygon feature. Afterward, the polygon layer was intersected 

Figure 1. 
Location of the Study Area with ICESat-2 Data Points.
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with canopy height (LiDAR) points to eliminate the stands without 
LiDAR points. In the next step, polygon and point layers were joined to 
merge their attribute tables in one place. Finally, the stand-types col-
umn was summarized based on the LiDAR height values using the aver-
age function found in ArcGIS. In this way, each stand’s top height was 
derived based on the ICESat-2 data. 

Then, we analyzed the relationship between ICESat-2 data and field-
measured stand top heights. Additionally, we tried to make the 
regression models better by using the Convolutional Neural Network 
(CNN) method (Figure 2). The cross-validation (four-fold) technique was 
used for the top height values from 52 forest stands (39 for training and 
13 for testing). Lastly, two data sets (i.e., field-based heights VS. LiDAR-
based heights) were subjected to correlation analysis. Correlation (Eq. 
1), root mean square error (RMSE) (Eq. 2), and R2 (Eq. 3) were calculated 
to compare linear regression (section 2.3) and CNN (section 2.4) results:
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where yi
act  is the measured top height and yi

cal  is estimated top 
height, yi

act  and yi
cal  the average measured and estimated top height.

Linear Regression
In order to model, firstly, linear regression functions were created 
between the top heights and ICESat-2 data. Linear regression estab-
lishes a linear relationship between two variables. Equation 4 is used to 
express this relationship:

y a bx� � � �  (4)

where y is the dependent and x is the independent variable, a is the 
slope, b is the intercept, and ε is the error term.

Convolutional Neural Network (CNN)
Convolutional Neural Network is a multi-layer artificial neural network model 
and is in the category of deep learning. Convolutional Neural Network can 
process 1D (signal, etc.), 2D (image, etc.), and 3D (video, etc.) data. There are 
four different layers in the CNN architecture. These are the input layer, con-
volutions layers, pooling layers, and fully connected layers (Li et al., 2018). 
R software was used for CNN analysis (CNN, 2021). Convolutional Neural 
Network was structured as one-dimensional and Keras sequential model 
was used. Concerning the model variables, the activation function was 
Relu, the optimization algorithm was Adam, filters and units were 256 and 
1024, and the number of the epochs was 50.

Fieldwork
Ground measurements were performed during an official forest inventory 
survey conducted between June and July 2021. Sample plots were distrib-
uted over the entire forested area in a systematic manner with 300 × 300 m 
intervals. The plots were circular and their sizes ranged from 400 m2 to 
800 m2 according to canopy closure classes. Among many other parame-
ters, the heights of three dominant trees were measured in each plot using 
a digital hypsometer, i.e. Vertex-IV. Then, they were averaged and recorded 
as the “top height” of each forest plot. Finally, top height values from 56 
forest sample plots were aggregated based on the stand-types map (aka 
forest cover map) of the study area. For example, if three plots fall into a 
given stand (aka sub-compartment) and their top heights are 15 m, 20 m, 
25 m, then the stand’s top height is calculated as 20 m. In this way, all stands’ 
top heights were entered into the attribute table of the map in ArcGIS 10.3.

Results

The field-based measurements of stand top heights ranged from 10 m 
(stand type: BL) to 40 m (LKncd1). Lower height values below 10 m also 
existed in non-forest surfaces, such as grassland and bareland. When 
all data were modeled using linear regression with ICESat-2 data, their 
correlation coefficient, R2, and RMSE values were found as 0.78, 0.61, and 
8.1 m, respectively. The model results showed that most of the stands’ 

Figure 2. 
The Workflow of the Methodology Followed in the Study.
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The Comparison of the ICESat-2, Field-Measured, and Modeled Data.
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top heights were better estimated by the CNN model (Figure 3). In 
order to assess the models’ accuracies, two evaluation statistics (R2 and 
RMSE) were used (Table 1). In the table, high R2 values show the model 
better fits reference data measured on the ground. In this case, the CNN 
model provided the highest R2 value as 0.68. The linear regression had 
a lower R2 value (0.58) compared to the CNN model. The RMSE presents 
the error rate of the models. The results indicated that the CNN method 
had smaller estimation errors than the linear regression method. The 
CNN model estimated it with an RMSE value of 4.2 m, whereas the linear 
regression model resulted in an RMSE value of 5.9 m.

Disccusion

In a recent study, in Finland, Neuenschwander and Magruder 
(2019) derived canopy heights with an RMSE of 3.7 m. They used 
854 canopy height values from terrestrial LiDAR and ICESat-2 data. In 
another study from India, Nandy et al. (2021) reported an R2 value of 
0.89 with RMSE of 1.1 m between field measurements and ICESat-2 data. 
They could predict canopy heights with an R2 of 0.84 and their RMSE 
value was only 1.15 m from 130 samples over a deciduous forest in 
the Himalayan. Yu et al. (2021), on the other hand, reported an R2 value 
of 0.66 with 2.5 m RMSE in the mangrove forests of Australia. They 
used ICESat-2 and terrestrial LiDAR data for modeling and validation, 
respectively.

In the present study, we modeled stand top heights in a heterogeneous 
and mixed forest complex. The landscape was very harsh, with a mean 
slope rate of >60%. In this sense, topographic variations could be one 
of the reasons for higher RMSE values compared to the studies men-
tioned above. Another reason could be tree species and species mix 
in the forest. The Hatila Valley’s forests are dominated by spruce, Scots 
pine, and fir species whose canopy forms are conical. Therefore, thin 
tree tops may cause higher height differences between the field- and 
satellite-based top height values. 

In a study by Neuenschwander and Magruder (2019), the usage of 
strong beam is recommended for characterizing vegetation structure 
but they state that the weak beam also provides useful data. In the pres-
ent study, ICESat-2 data were collected from weak and strong beams to 
increase the sample size. However, using only the strong beam data for 
high forest stands might reduce the RMSE value. Researchers should 
test different data combinations for distinct forest types to maximize 
LiDAR satellites’ efficiency in the future. 

Figure 4 presents the differences between the field-based measure-
ments and the data acquired with ICESat-2 and the estimated height 
values. The differences range between −13.5 m and 4.2 m and com-
pared to estimated data using the linear regression model, the CNN 
model performs better. The maximum and minimum differences vary 
between 12 m and −6.5 m with CNN, whereas it is higher and ranges 
between 14.5 m and −8 m with the linear regression model. The best 
estimated stands were KnLcd2 (beech-spruce mixed), GnLbc3 (horn-
beam-spruce mixed), KnLcd3 (beech-spruce mixed), LGbc3 (spruce-fir 
mixed), Kzbc2 (pure alder), LKncd1 (spruce-beech mixed). The estima-
tion errors were less than 10% in these stand types. In contrast, the 
worst height estimations were in grasslands, small forest openings (OT), 
barelands, degraded stands (BMz, BLG, BL), and MzGnbc2 (oak-horn-
beam mixed). The field-measured heights of those stands were gener-
ally less than 10 m but ICESat-2 overestimated them with unacceptable 
error rates. 

Table 1. 
The Comparison of the Models Based on Three Statistics 

ICESat-2 Linear Regression CNN

Correlation .782 .758 .824

R2 .612 .575 .679

RMSE (m) 8.105 5.853 4.209

Note: RMSE = root mean squared error; CNN = Convolutional Neural Network.

Figure 4. 
Height Differences Among Field-Measured Data and (a) Raw ICESat-2 Data, (b) CNN Model, and (c) Linear Regression Model.
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The results from this study suggest that spaceborne LiDAR data are use-
ful, particularly in broadleaves-dominated, dense, and mature forests. 
Since their canopies are smoother and tally, ICESat-2 canopy height 
values better fit the observed heights on the ground. The coniferous 
forests, on the other hand, have generally conic or pyramidal canopies 
resulting in higher error rates in ICESat-2 data. Similarly, sparsely-covered 
weak forest stands have a lot of openings among tree tops, resulting in 
the rugged surface over the forest canopy. In these cases, ICESat-2 can-
not derive accurate canopy height data. Degraded forest stands, which 
have a canopy closure of <10%, are another stand type we fail in accu-
rate topheight estimation. Non-forest areas, that is, grassland, pasture, 
treeless forest soil (OT), rocky areas, and bareland, other land use land 
cover classes that ICESat-2 does not work. Thus, it can be said that the 
spaceborne LiDAR data may help modelers to derive height informa-
tion from fully covered productive forests in an efficient way. 

Conclusion and Recommendations

The new spaceborne laser altimetry mission of ICESat-2 provides sig-
nificant opportunities to forest professionals in modeling the vertical 
structure of forests. Former studies present the first outlook on canopy 
height estimation using ICESat-2 in different forest types such as tropical, 
boreal, and mangroves. In the present study, we derived stand top height 
information from the same satellite system for the first time in Turkey. 
The results showed ICESat-2-derived height estimations have acceptable 
accuracy levels even in mixed temperate forests located on harsh topog-
raphy. In particular, top heights of the broadleaved, fully covered, and tally 
forest stands can be better modeled by ICESat-2 data. It is also observed 
that the model accuracies can be improved by using the CNN regres-
sion method. In all forest stands, CNN models performed better than the 
linear regression model as well as the raw ICESat-2 data. The CNN model 
increased the Pearson’s R, and R2 values by 6.6% and 10% compared with 
the linear regression model. It also decreased the RMSE by about 1.6 m in 
the Hatila Valley National Park. Thus, we conclude that satellite-based free 
LiDAR data, which has not been widely used in Turkey yet, can be utilized 
as an auxiliary data source in various forestry applications and the models 
may be significantly improved using the CNN method. Nevertheless, fur-
ther analyses are needed for different forest types with higher amount of 
sample sizes. The weak and strong beams should also be analyzed sepa-
rately to identify their performances in model accuracies. 
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