Show simple item record

dc.contributor.authorÇöl, Aynur
dc.contributor.authorMamedov, ‪Khanlar R.
dc.date.accessioned2022-01-10T10:27:18Z
dc.date.available2022-01-10T10:27:18Z
dc.date.issued2012en_US
dc.identifier.citationÇöl, A., & Mamedov, K. R. (2012). On an inverse scattering problem for a class of Dirac operators with spectral parameter in the boundary condition. Journal of Mathematical Analysis and Applications, 393(2), 470-478.en_US
dc.identifier.urihttps://hdl.handle.net/11494/3693
dc.description.abstractIn this work, we consider the inverse scattering problem for a class of one dimensional Dirac operators on the semi-infinite interval with the boundary condition depending polynomially on a spectral parameter. The scattering data of the given problem is defined and its properties are examined. The main equation is derived, its solvability is proved and it is shown that the potential is uniquely recovered in terms of the scattering data. A generalization of the Marchenko method is given for a class of Dirac operator.en_US
dc.language.isoengen_US
dc.publisherAcademic Press Inc Elsevier Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectScatteringdataen_US
dc.subjectMainequationen_US
dc.subjectDirac equation systemen_US
dc.subjectInverse problemen_US
dc.subjectNonlinear parameter in the boundary conditionen_US
dc.subjectUniquenessen_US
dc.titleOn an inverse scattering problem for a class of Dirac operators with spectral parameter in the boundary conditionen_US
dc.typearticleen_US
dc.relation.journalJournal of Mathematical Analysis and Applicationsen_US
dc.departmentAÇÜ, Eğitim Fakültesi, Matematik ve Fen Bilimleri Eğitimi Bölümüen_US
dc.identifier.volume393en_US
dc.identifier.issue2en_US
dc.identifier.startpage470en_US
dc.identifier.endpage478en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.jmaa.2012.03.009en_US
dc.contributor.institutionauthorMamedov, Khanlar R.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record