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ABSTRACT
This paper proposes a new heavy-tailed and alternative slash type
distribution on a bounded interval via a relation of a slash random
variable with respect to the standard logistic function to model the
real data setwith skewedandhigh kurtosiswhich includes theoutlier
observation. Some basic statistical properties of the newly defined
distribution are studied. We derive the maximum likelihood, least-
square, and weighted least-square estimations of its parameters. We
assess the performance of the estimators of these estimation meth-
ods by the simulation study. Moreover, an application to real data
demonstrates that the proposed distribution can provide a better fit
than well-known bounded distributions in the literature when the
skewed data set with high kurtosis contains the outlier observations.

ARTICLE HISTORY
Received 31 March 2019
Accepted 7 December 2019

KEYWORDS
Logit slash distribution; unit
slash distribution; heavy
tailed; logistic function;
outlier

1. Introduction

The bounded distributions, defined on (0,1) interval, have been applied to model the
behavior of random variables limited to intervals of (0,1) length. These distributions have
found applications in fields like meteorology, medicine, biology, hydrology, economics,
actuarial, ecology, forestry, lifetime, financial modeling, and other sciences. No doubt,
the beta distribution is one the first distribution that comes to mind to model the per-
centages and proportions. To introduce more flexible distribution than beta distribution
there are some alternative distributions that have been proposed in distribution litera-
ture such as the Topp–Leone [43], Kumaraswamy (Kw) [28], arcsine [3], generalized beta
type [33], standard two-sided power [44], Mc Donald arcsine (McA) [11], exponentiated
Topp–Leone (ETL) [37], two-sided generalized Kumaraswamy [26], generalized beta [20]
and unit Lindley distributions [30].

In addition, the distributions defined on (0,1) interval have been presented via some
transformations of the randomvariable (rv). For example, following transformation related
to logistic function structure

W = e(Z−μ)/σ

1 + e(Z−μ)/σ
= 1

1 + e−(Z−μ)/σ
= 1 − 1

1 + e(Z−μ)/σ
(1)
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can be used to obtain bounded distribution on (0,1), where Z is rv defined on (−∞,∞)

interval, μ ∈ � is location parameter and σ > 0 is the scale parameter. This logistic func-
tion is known as the inverse function of logit function. IfZ rv has standard normal rv in (1),
thenW rv is named as Johnson SB distribution, which is introduced by Johnson [23], with
the following probability density function (pdf),

f (w,μ, σ) = σ

w (1 − w)
φ

(
σ log

(
w

1 − w

)
+ μ

)
, 0 < w < 1,

where φ(·) is the pdf of the standard normal distribution. We denote it with
Johnson SB(μ, σ). In fact that the logit normal distribution, LN(μ, σ), is obtained for
Johnson SB(−μ/σ , 1/σ). One may see Mead [32], Frederic and Lad [13] and Pinson [36]
for LN distribution. If Z rv has standard Laplace and standard logistic rv in (1), thenW rv
is named as Johnson S′

B distribution, which is introduced by Johnson [24], and unit logistic
distribution, which is introduced by Tadikamalla and Johnson [42], respectively.

The distributions defined on (0,1) interval can be generated by the logarithmic trans-
formation of the typeW = e−Z , where Z is rv defined on (0,∞) interval. The unit-gamma
[10], the log-Lindley [19], log-xgamma [2], unit Birnbaum–Saunders [31], unit inverse
Gaussian (UIG) [17] and log-weighted exponential [1] distributions can be given as some
examples of this transformation. Examples of the bounded distributions are also derived
from the transformation of the type W = Z/(1 + Z), where Z is rv defined on (0,∞)

interval. The unit Lindley distribution is an example of this method. The transforma-
tion methods can be increased by other functions. These transformations have generated
bounded distributions, which are more flexible than beta distribution in terms of data
modeling.

On the other hand, slash type (scale mixture type) distributions are well-known as
heavy-tailed or thick-tailed distributions.When data set has the outlier observation, heavy-
tailed distributions have been proposed by many statisticians to increase efficiency of the
inferences based on data set. The t distribution is a good alternative to normal distribution
since the normal distribution is sensitive to outlier observation. Another popular alterna-
tive heavy-tailed distribution is the ordinary slash distribution which has been introduced
by [41] with the following stochastic representation

Y = μ + σ
Z

U1/q , (2)

where q>0 is the shape parameter, which controls the tail thickness and kurtosis of the
distribution, μ ∈ � is location parameter, σ > 0 is the scale parameter and standard nor-
mal rvZ is independently distributed of the uniform rvU on (0,1). The pdf and cumulative
distribution function (cdf) of the slash distribution are respectively given by

fSl
(
y, q,μ, σ

) = q
σ

∫ 1

0
tqφ

(
t
[
y − μ

σ

])
dt, y ∈ � (3)

and

FSl
(
y, q,μ, σ

) = q
∫ 1

0
tq−1�

(
t
[
y − μ

σ

])
dt, y ∈ �,

where �(·) is the cdf of standard normal distribution. We denote it with Sl(q,μ, σ). The
standard slash distribution or canonical slash is obtained for the Sl(1,μ, σ). The normal
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distribution is obtained as q → ∞. The slash distribution has heavier tails and larger kur-
tosis than the normal distribution as well as symmetric bell-shaped. The Sl distribution are
also useful in robustness studies (see [22,25,34,41]). Further, the heavy-tailed distributions
with slash type have been introduced in the literature such as multivariate skew slash [45],
exponential power slash [15], another multivariate skew slash [4], multivariate symmet-
ric slash [5], half normal slash [35], modified slash [38], beta slash [16], beta Moyal slash
[14], matrix variate multivariate slash [9], Rayleigh slash [21], slashed half t [8], gamma
slash [27], Lindley–Weibull slash [39] and Gumbel slash [18] distributions. These slash
type distributions have supplied nice results on data modeling.

The first objective of this paper is to introduce a new distribution on (0,1) interval. We
define it by making use of the idea lying in the transformation of the logistic function
which is given by (1). In this idea, Z rv will be a slash rv, which is pointed out by (2). To
the best of our knowledge, there is no bounded slash type distribution on (0,1) interval
except the truncated slash distribution. The second objective of the paper is to obtain an
alternative bounded distribution for modeling the data sets involving asymmetric, heavy
tails and outliers. The newly defined distribution will have heavier tails than the Johnson
SB distribution, and it will be more useful for modeling data sets involving asymmetric,
heavy tails, and outliers. Therefore, it will be naturally a robust alternative to the Johnson
SB distribution. The newly defined distribution is named as logit slash distribution, and its
statistical properties have been studied. We consider the maximum likelihood estimation,
least-square estimation, and weighted least-square estimation procedures to estimate of
the model parameters and give a simulation study to see performances of these estimation
methods. To illustrate its applicability on real phenomena, an application of the model to
a real data set with skewed and high kurtosis, which includes in the outlier observations,
is presented and compared to the fit attained by some other well-known distributions on
the (0,1) interval. The paper is ended with future work and conclusion remarks.

2. Logit slash distribution

To introduce a new heavy-tailed bounded distribution on (0,1), we consider the following
definition.

Definition 2.1: A random variable X has a logit slash distribution with shape parameter
q, location parameter μ and scale parameter σ if its pdf is given by

f
(
x, q,μ, σ

) = q
x (1 − x) σ

∫ 1

0
tqφ

⎛⎝t
⎡⎣ log

(
x

1−x

)
− μ

σ

⎤⎦⎞⎠ dt, (4)

for 0< x<1, q, σ > 0 and −∞ < μ < ∞.

Proof: Define X = eY/(1 + eY) random variable, where Y has slash random variable with
pdf (3). Then, we obtain g−1(x) = log(x/(1 − x)) and ∂g−1(x)/∂x = 1/(x(1 − x)). Now,
we use the chain rule to compute the density of X

f
(
x, q,μ, σ

) = fSl
(
g−1 (x) , q,μ, σ

) ∣∣∣∣∂g−1 (x)
∂x

∣∣∣∣ .
Hence, the proof is completed. �
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On the other word, a random variable X is distributed the logit slash distribution on the
interval (0,1) if its logit transformation, log(X/(1 − X)), is distributed Sl(q,μ, σ). There-
fore, we call it the logit slash distribution. We denote it with LSl(q,μ, σ). Since the pdf of
the LSl distribution is reduced to pdf of the Johnson SB distribution as q → ∞, we gen-
eralize the Johnson SB distribution. The LSl distribution is also defined by the following
hierarchical model

X|U ∼ LN(μ, σ U−1/q)

U ∼ Uniform(0, 1)

X ∼ LSl(q,μ, σ).

This compounding is given by the following pdf formula

f
(
x, q,μ, σ

) =
∫ 1

0
fX|U (x |u ) fU (u) du

=
∫ 1

0

u1/q

x (1 − x) σ
φ

⎛⎝u1/q
⎡⎣ log

(
x

1−x

)
− μ

σ

⎤⎦⎞⎠ du.

We obtain Equation (4) by transforming the variable into t = u1/q.
The cdf of the LSl distribution is given as follows:

F
(
x, q,μ, σ

) = q
σ

∫ 1

0
tq
∫ x

0
[w (1 − w)]−1 φ

⎛⎝t
⎡⎣ log

(
w

1−w

)
− μ

σ

⎤⎦⎞⎠ dw dt,

ω = t

⎡⎣ log
(

w
1−w

)
− μ

σ

⎤⎦
= q

∫ 1

0
tq−1

⎡⎣∫ t
[
log( x

1−x )−μ

σ

]
−∞

φ (ω) dω

⎤⎦ dt

= q
∫ 1

0
tq−1�

⎛⎝t
⎡⎣ log

(
x

1−x

)
− μ

σ

⎤⎦⎞⎠ dt, 0 < x < 1, (5)

where �(·) is the cdf of the standard normal distribution, that is F(x, q,μ, σ) =
FSl(log[x/(1 − x)], q,μ, σ). Now, we give its some distributional properties with the fol-
lowing subsections.

2.1. Density shape

Since theLSl distribution has three parameters, which control tail thickness, kurtosis, skew-
ness and pdf shapes of distribution, we can obtain bounded slash distributions on interval
(0,1) with very flexible forms. The distribution is symmetric about 1

2 when μ = 0. This
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situation is given as follows.

f
(
1
2

− x, q, 0, σ
)

= q( 1
2 − x

) ( 1
2 + x

)√
2πσ

∫ 1

0
tq

× exp

⎧⎨⎩−t2

2

(
log
( 1
2 − x

)− log
( 1
2 + x

)
σ

)2
⎫⎬⎭ dt

and

f
(
1
2

+ x, q, 0, σ
)

= q( 1
2 + x

) ( 1
2 − x

)√
2πσ

∫ 1

0
tq

× exp

⎧⎨⎩−t2

2

(
log
( 1
2 + x

)− log
( 1
2 − x

)
σ

)2
⎫⎬⎭ dt.

It is clear that f (1/2 − x, q, 0, σ) = f (1/2 + x, q, 0, σ). This means that the density func-
tion is symmetric, if μ = 0, in which case expected value of distribution is equal to 1/2
(see Figure 1). In more general terms, f (x, q,μ, σ) = f (1 − x, q,−μ, σ) is holded. Hence,
if LSl(q,−μ, σ) is right skewed, the LSl(q,μ, σ) is just left skewed.

We sketched the plots of the pdf to see its possible density shapes. From Figure 1, we
see that pdf shapes of the LSl distribution can be w-shaped, U-shaped, bi-modal shaped,
bell (uni-modal) shaped, N-shaped, decreasing and increasing. It is well known that the
ordinary slash distribution has a thicker tail than the ordinary normal distribution due
to its q shape parameter which controls tail thickness distribution. Thus, we expect that
the LSl distribution also will have thicker tail than the logit normal distribution As it can
be seen that for the same μ = 0 and σ = 1 parameters values, this situation is valid (see
Figure 1).

Further, Figure 2 indicates the shape regions of pdf of the LSl distribution for fixed
μ = 0 and q = 15. As seen from this Figure, possible eight shape regions of pdf have been
scanned via changing parameters for fixedμ and q.When the LSl distribution is symmetric
about 1

2 , shapes of distribution can be U-shaped or w-shaped for changing parameters q
andσ .When q = 15, the shapes of distribution can be bi-modal or uni-modal for changing
parameters μ and σ .

Consequently, we can say that this new model can be more useful for various data set
than other boundedmodels. All in all, the shapes of this distribution can be a distinguishing
feature on data modeling.

2.2. Mode of distribution

Mode(s) of distribution is(are) known as the value which maximize(s) its density at local
maxima point(s). At the same time, density can be minimum value(s) at the antimode(s)
where is (are) localminima point(s). These appear as distinct extreme points (localmaxima
or local minima points) in the density function. At the local minima points, U-shaped
and w-shaped distributions have uni-antimode and bi-antimode respectively.We note that
there is a mode between two local minima points for the w-shaped distributions.
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Figure 1. The possible pdf shapes and tail plot of the LSl distribution for selected parameters values.

Figure 2. The possible pdf shape regions of the LSl distribution for fixedμ = 0 (left) and q = 15 (right)
parameters values.
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Table 1. Somemode and antimode values of the LSl distribution for selected parameters.

(q,μ, σ) Mode point(s) Value(s) at mode Antimode point(s) Value(s) at antimode Density shape

(0.5,0,1) − − 0.5 0.5319 U-shaped
(1,0,1) − − 0.5 0.7978 U-shaped
(2,3,2) − − 0.2715 0.2347 U-shaped
(0.3,0,0.5) 0.5∗ 0.7365∗∗ 0.1415 (0.8585) 0.4038 w-shaped
(0.3,1,0.5) 0.8055∗ 1.0277∗∗ 0.2161 (0.9228) 0.2125 (0.8853) w-shaped
(0.3,−1,0.5) 0.1945∗ 1.0277∗∗ 0.7839 (0.0772) 0.2125 (0.8853) w-shaped
(0.5,−0.5,0.45) 0.3429∗ 1.2806∗∗ 0.0892 (0.6891) 0.8434 (0.3235) w-shaped
(15,2,2) 0.9987 13.6627 − − uni-modal
(15,−2,2) 0.0013 13.6627 − − uni-modal
(15,0,1) 0.5 1.4960 − − uni-modal
(30,0,1.7) 0.0628 (0.9372) 1.1801 − − bi-modal
(12,0.1,1.65) 0.0612 (0.9542) 1.1026 (1.3185) − − bi-modal
(12,−0.1,1.65) 0.0458 (0.9388) 1.3185 (1.1026) − − bi-modal
∗Mode between two local minima points.
∗∗Denstiy value at mode between two local minima points.

Differentiating (1) and equating to zero, we have

x2σ 3 (1 − x) f
(
x, q,μ, σ

)− xσ 3 (1 − x)2 f
(
x, q,μ, σ

)− q
(
log
(

x
1 − x

)
− μ

)

×
∫ 1

0
tq+2φ

⎛⎝t
⎡⎣ log

(
x

1−x

)
− μ

σ

⎤⎦⎞⎠ dt = 0.

Since the pdf of the LSl distribution contains the integral form, its first derivation con-
tains the integral form naturally. Therefore, its mode(s) or antimode(s) can not be obtained
explicitly. However, we numerically calculated its modes and antimodes using R program
which includes the one-dimensional optimization method that is called the Brent method
[7]. We obtain some mode points and its values at mode point for selected parameters
values given by Table 1.

2.3. Hazard rate function

The hazard rate function (hrf), failure rate function, is an important tool in reliability
analysis. On the support of the LSl distribution, its hrf is given by

h
(
x, q,μ, σ

) = q
x (1 − x) σ

∫ 1
0 tqφ

(
t

[
log
(

x
1−x

)
−μ

σ

])
dt(

1 − q
∫ 1
0 tq−1�

(
t

[
log
(

x
1−x

)
−μ

σ

])
dt

) , 0 < x < 1. (6)

Analytically, it can be difficult to identify the hrf shapes of distribution. That’s why we
sketched the plot of hrf to see its possible shapes. From Figure 3, we see that hrf shapes
of the LSl distribution can be an increasing function as monotone shaped and can be
non-monotone shaped such as bathtub shaped, N-shaped (modified bathtub shaped), and
w-shaped. According to Bebbington et al. [6], N-shaped hrf can appear inmortality among
breast cancer patients, and w-shaped hrf can be seen inmixing of two or more lifetime dis-
tributions as well as these hrf shapes can be obtained using polynomial functions of degree
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Figure 3. The possible hrf shape of the LSl distributions for selected parameters values.

three or four. It is a striking property that the LSl distribution has N-shaped and w-shaped
hrf on a bounded interval (0,1). Thus, hrf shapes of this distribution can be distinguishing
feature on data modeling as well as in its density. The beta and Kw distributions have not
these hrf shapes. Further, Figure 4 indicates the possible shape regions of hrf of the LSl
distribution for fixed μ = 0 and q = 2. As seen from Figure 4, four shape regions of hrf
have been scanned via changing parameters for fixed μ and q.

2.4. Moments and relatedmeasures

When X ∼ LSl(q,μ, σ), the rth raw moment of X is given by

μ′
r =

∫ 1

0
xrf
(
x, q,μ, σ

)
dx, ω = t

⎡⎣ log
(

x
1−x

)
− μ

σ

⎤⎦
= q

∫ 1

0
tq−1

∫ +∞

−∞

(
1 − 1

1 + eμ+ωσ/t

)r
φ (ω) dω dt

= q√
2π

r∑
i=0

(−1)i
(
r
i

)∫ 1

0
tq−1

∫ +∞

−∞
e−ω2/2 (1 + eμ+ωσ/t)−i dω dt

= 1 + q√
2π

r∑
i=1

(−1)i
(
r
i

)∫ 1

0
tq−1

∫ +∞

−∞
e−ω2/2 (1 + eμ+ωσ/t)−i dω dt. (7)

Especially, the expected value, E(X), is given by

μ′
1 = 1 − q√

2π

∫ 1

0
tq−1

∫ +∞

−∞
e−ω2/2 (1 + eμ+ωσ/t)−1 dω dt.
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Figure 4. The possible hrf shapes regions of the LSl distribution for fixedμ = 0 (left) and q = 2 (right)
parameters values.

If we re-write (7), the following equation is obtained for μ′
r

μ′
r = q√

2π

∫ 1

0
tq−1

∫ +∞

−∞

(
1 + e−(μ+ωσ/t)

)−r
e−w2/2 dω dt. (8)

As it can be seen, μ′
r ’s can not be expressed in a closed form. The numerical integration

can be applied to obtain the mean and other important related measures. We note that the
integral, which related toω in the (8), is the rth rawmoment of the Johnson SB distribution.
Hence, we can obtain alternative formula forμ′

r. Following results of the Johnson [23], the
expected value of the LSl distribution is obtained by

μ′
1 = q√

2π

∫ 1

0
tq−1e−(1/2)

(
tμ
σ

)2 ⎡⎢⎣ σ
2t + σ

t
∑∞

n=1 e
−(σn/t√2

)2
cosh n(σ 2/t2+2μ)

2 sech
(
nσ 2

t2

)
1 + 2

∑∞
n=1 e−2(nπ t/σ)2 cos

(
2πnμt2/σ 2

)

+
t2π
σ

∑∞
n=1 e

−(((2n−1))π t/σ
√
2
)2
sin
[
(2n − 1) μt2/σ 2] cosech (π t

√
(2n−1)
σ

)2
1 + 2

∑∞
n=1 e−2(nπ t/σ)2 cos

(
2πnμt2/σ 2

)
⎤⎥⎦ dt.

(9)

The other moments can be given by partial derivatives of (8) respect to μ based on the
recurrence formula. This procedure is given by followings based on (8).

∂μ′
r

∂μ
= r

q√
2π

∫ 1

0
tq−1

[∫ +∞

−∞
e−w2/2

(
1 + e−(μ+ωσ/t)

)−r−1
e−(μ+ωσ/t) dω

]
dt

= r
q√
2π

∫ 1

0
tq−1

[∫ +∞

−∞
e−w2/2

(
1 + e−(μ+ωσ/t)

)−r−1

×
[(

1 + e−(μ+ωσ/t)
)

− 1
]
dω
]
dt

= r
(
μ′
r − μ′

r+1
)
.
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Hence, we have

μ′
r+1 = μ′

r − 1
r
∂μ′

r
∂μ

. (10)

Using (10), for r = 1, 2, 3 following equations are obtained by

μ′
2 = μ′

1 − ∂μ′
1

∂μ
,

μ′
3 = μ′

1 − 3
2

∂μ′
1

∂μ
+ 1

2
∂2μ′

1
∂μ2 ,

μ′
4 = μ′

1 − 11
6

∂μ′
1

∂μ
+ ∂2μ′

1
∂μ2 − 1

6
∂3μ′

1
∂μ3 .

The jth order central moment can be obtained by the following relationship

μj = E[(X − μ′
1)

j] =
j∑

r=0

(
j
r

)
μ′
r(−μ′

1)
j−r, j = 2, 3, . . .

With the above formula, the skewness and kurtosis coefficients are respectively given by

√
β1 =

√
μ2
3

μ3
2

and β2 = μ4

μ2
2
.

However, these above calculations can be easily computed using many packet programs
such as R, Matlab, Maple, and Wolfram. It is noticed that it may be useful for the moment
calculations of the LSl distribution to take q>2r since the moments of ordinary slash
distribution are valid for q>2r.

The plots of the
√

β1 and β2 for selected values of q, μ and σ are shown in Figure 5.
From this Figure, we see that asymmetry and kurtosis of distribution depend on three
parameters. For μ = 0, the skewness of distribution is equal to zero as expected. When
q increases, the positive (negative) skewness is seen for negative (positive) μ values. The
skewness decreases for fixed q and σ , when μ increases. The negative (positive) skewness
decreases for fixed μ > 0(< 0) and σ , while q increases. When μ < 0, kurtosis decreases.
Otherwise kurtosis increases.When q increases, the kurtosis decreases for fixedμ.When σ

increases, firstly skewness decreases then it increases for fixed q and μ. When q increases,
firstly skewness increases then it decreases for fixed σ and μ. When σ increases, firstly
kurtosis increases then it decreases for fixed q and μ. When q increases, firstly kurtosis
decreases then it increases for fixed σ and μ. These plots indicate that the distribution can
model various data types on the unit interval in terms of skewness and kurtosis.

2.5. Quantile function and randomnumber generation

The LSl distribution can be simulated by inverting its cdf in (5) with the solution of the
following non-linear equation:∫ 1

0
tq−1�

⎛⎝t
⎡⎣ log

(
xu

1−xu

)
− μ

σ

⎤⎦⎞⎠ dt − u
q

= 0,
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Figure 5.
√

β1 and β2 plots of the LSl distribution for selected parameters values.

where u ∼ uniform(0, 1) and xu is the solution of the equation, that is u th quantile of the
LSl distribution. Hence, if U is a uniform random variable on (0, 1) then, XU is the LSl
random variable. The uniroot function of R software can be used to solve the above non-
linear equation. In addition, we can obtain random number from the LSl distribution by
the following algorithm. We can give this procedure as below.

Algorithm

• set q, μ and σ .
• simulate U ∼ Uniform(0, 1);
• simulate Z ∼ N(0, 1);
• compute Y = μ + σZ/U1/q, then Y follows that Sl(q,μ, σ);
• compute X = eY/(eY + 1), then X follows that LSl(q,μ, σ).

3. Estimationmethods

In this section, we propose various estimators for the unknown parameters of the LSl dis-
tribution. We discuss the maximum likelihood, least squares and weighted least-squares
estimation methods and compare their performances on the basis of simulated sample
from the LSl distribution. We note that the components of the gradient (score) vectors
which are belong to three estimation methods are given in Appendix.

3.1. Maximum likelihood estimation

In this subsection, we estimate the parameters of the LSl distribution by the method of
maximum likelihood estimation (MLE). Let X1,X2, . . . ,Xn be a random sample from the
LSl distribution with observed values x1, x2, . . . , xn and	 = (q,μ, σ)T be the vector of the
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model parameters. The log-likelihood function for 	 may be expressed as


 (	|x) = 
 = n log q − n log σ −
n∑

i=1
log [xi (1 − xi)] +

n∑
i=1

log
[∫ 1

0
tqφ (t ui) dt

]
,

(11)

where ui = (log(xi/(1 − xi)) − μ)/σ for i = 1, 2, . . . n. We differentiate Equation (11)
with respect to q, μ and σ to obtain the score vector (Uq = ∂
/∂q,Uμ = ∂
/∂μ,Uσ =
∂
/∂σ )T .

SettingUλ = Uq = Uμ = Uσ = 0 and solving them simultaneously,MLEs, say q̂, μ̂ and
σ̂ , are obtained.

For interval estimation of the parameters, we obtain the 3 × 3 observed information
matrix Jrs = J(	) = {∂2
/∂r ∂s} (for r, s = q,μ, σ ), whose elements can be found from the
author when needed. At the same time, these elements can be computed numerically by the
packet program. Under standard regularity conditions when n → ∞, the distribution of
	̂ can be approximated by a multivariate normal N3(0, J(	̂)−1) distribution to construct
approximate confidence intervals for the parameters. Here, J(	̂) is the total observed infor-
mation matrix evaluated at 	̂. Then, approximate 100(1 − δ)% confidence intervals for q,

μ and σ can be determined by: q̂ ± zδ/2
√
Ĵ−1
qq , μ̂ ± zδ/2

√
Ĵ−1
μμ and σ̂ ± zδ/2

√
Ĵ−1
σσ , where

zδ/2 is the upper δth percentile of the standard normalmodel and Ĵ−1
ii are diagonal elements

of J(	̂)−1 for i = q, μ and σ .
The likelihood ratio (LR) statistic can be used for comparing the LSl model

with LN model (or Johnson SB model). This comparison is to test equivalently H0 :
Model is LN (q → ∞) versus H1 : Modelis LSl. For this situation, the LR statistic is com-
puted with w = 2[
(q̂, μ̂, σ̂ ) − 
(μ̃, σ̃ )], where (q̂, μ̂, σ̂ ) are the unrestricted MLEs and
(μ̃, σ̃ ) are the restricted estimates under H0. The statistic w is asymptotically (as n → ∞)
distributed as χ2

υ , where υ is the difference of two parameter vectors of nested models. For
example, υ = 1 for the above hypothesis test.

3.2. Least-squares estimation

Let X(1),X(2), . . . ,X(n) be ordered statistics from the LSl distribution with sample size n.
Then, the expectation of the empirical cumulative distribution function is defined as

E
[
F
(
x(i)
)] = i

n + 1
; i = 1, 2, . . . , n.

The least-square estimates (LSEs), say q̂LSE, μ̂LSE and σ̂LSE, of q, μ and σ are obtained by
minimizing

QLSE (	) =
n∑

i=1

(
F
(
x(i), q,μ, σ

)− i
n + 1

)2
. (12)



JOURNAL OF APPLIED STATISTICS 13

3.3. Weighted least-squares estimates

Let X(1),X(2), . . . ,X(n) be ordered sample of size n from LSl distribution. The variance of
the empirical cumulative distribution function is defined as

V
[
F
(
x(i)
)] = i(n − i + 1)

(n + 2)(n + 1)2
; i = 1, 2, . . . , n.

Then, the weighted least-square estimates (WLSEs) q̂WLSE, μ̂WLSE and σ̂WLSE of q, μ and
σ are obtained by minimizing

QWLSE (	) =
n∑

i=1

(
F
(
x(i), q,μ, σ

)− i
n+1

)2
V
[
F
(
x(i)
)] . (13)

Equations (11), (12) and (13) can be optimized directly by some well-known packet pro-
grams such as R (optim and maxLik routines), SAS ( PROC NLMIXED routine),
and Ox (MaxBFGS routine) to numerically optimize 
(	), QLSE(	), and QWLSE(	)

functions.

4. Simulation study

In this section, the performances of the MLEs, LSEs andWLSEs of the LSl distribution are
discussed via a simulation study. The algorithm, which is given by Section 2.5, is used to
generate randomvariables from theLSl distribution.We generateN = 1000 samples of size
n = 20, 30, . . . , 1000 from the LSl distribution with true parameter values q = 5, μ = 0,
σ = 1. The performances of the above estimators is evaluated based on the empirical bias
and mean square error (MSE) measurements. The empirical biases and MSEs are given by

B̂iasε(n) = 1
N

N∑
i=1

(ε̂i − ε)

and

M̂SEε(n) = 1
N

N∑
i=1

(ε̂i − ε)2,

respectively, where ε = q,μ, σ . The results of above estimators were obtained by the optim
function in the R program.

Figures 6–8 display the simulation results for the above measures. As seen from these
figures, for three estimators, the empirical biases and MSEs approach zero when the sam-
ple size increases. Therefore, we can say that all estimators are to be consistent. Although
the performances of the estimators are very close in all the cases for μ parameter, the
performance of the MLE method is better than others in all the cases for q and σ

parameters.
Furthermore, we also give a simulation study based on the above results of the MLEs

to see the performance of the 95% confidence intervals. The performance of the MLEs
is evaluated based on the average length (AL). The standard errors of the MLEs, namely
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Figure 6. The simulation results of the q parameters.

Figure 7. The simulation results of theμ parameters.

Figure 8. The simulation results of the σ parameters.
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Figure 9. The estimated ALs for the selected parameter vector.

(sq̂i , sμ̂i , sσ̂i) for i = 1, . . . ,N, are evaluated by inverting the observed information matrix.
The estimated ALs are given by

ALε (n) = 3.919928
N

N∑
i=1

sε̂i .

Figure 9 displays the simulation results for the above measure. As seen from Figure 9,
as expected, when the sample size increases the AL decreases for each parameter. The
simulation results verify the consistency property of MLEs.

5. Data analysis

The Better Life Index (BLI) data set, measured in the year 2015, is used to demon-
strate the usefulness of LSl distribution model. The data set can be found in
https://stats.oecd.org/index.aspx?DataSetCode=BLI2015. The BLI data set consists of 11
indicator and 24 variables and it is used to classify the OECD (Organisation for Economic
Co-operation and Development) countries as well as Brazil and Russia. Here, we use an
indicator that is entitled Job security as data set. This indicator presents the probability to
become unemployed and it is calculated as the number of people who were unemployed
in 2013 but were employed in 2012 over the total number of employed in 2012.

We give the summary statistics of the data set in Table 2. The data is right skewed and
has the large kurtosis. Figure 10 presents the box plot of the data set. This figure shows
that since the observations, which are 0.122 and 0.178, may be outlier observations for the
data set, it can be needed the heavy-tailed (thicker tail) distribution to model this data set.
Therefore, we will analyze this data set without outlier observations before we re-analyze
this data set with outlier observations to see the necessity of the thick-tailed distribution.

https://stats.oecd.org/index.aspx?DataSetCode=BLI2015
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Table 2. Some summary statistics of the data set.

Minimum Mean Median Maximum Variance Skewness Kurtosis n

0.0240 0.0567 0.0515 0.1780 0.0007 2.7117 12.0173 36

Figure 10. The box plot of the data set.

Under MLEmethod, we now fit the LSl distribution to this data set and compare it with
some distributions, which are defined on (0,1) interval. These competitor distributions are
(with their pdfs for 0< x<1):

• Beta distribution:

fBeta (x,μ, σ) = 1
B (μ, σ)

xμ−1 (1 − x) σ−1, μ, σ > 0,

where B(μ, σ) is the beta function.
• Kw distribution:

fKw (x,μ, σ) = μσxμ−1 (1 − xμ
)

σ−1, μ, σ > 0.

• ETL distribution:

fETL (x,μ, σ) = 2μσ (1 − x) [x (2 − x)]μ−1 [1 − xμ (2 − x)μ
]σ−1 , μ, σ > 0.
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• McA distribution:

fMcA
(
x, q,μ, σ

) = q
π B (μ, σ)

√
x − x2

(
2
π
arcsin

√
x
)qμ−1

×
(
1 −

(
2
π
arcsin

√
x
)q)σ−1

, q,μ, σ > 0.

• UIG distribution:

fUIG (x,μ, σ) =
√

μ

2π
1

x
(− log x

)3/2 exp [ μ

2σ 2 log x
(
log x + σ

)2] , μ, σ > 0.

• Johnson SB and logit normal distributions.

To determine the best model, we also compute the estimated log-likelihood val-
ues 
̂, Akaike Information Criteria (AIC), Bayesian information criterion (BIC),
Kolmogorov–Smirnov (KS), Cramer–von-Mises, (W∗) and Anderson–Darling (A∗)
goodness-of-fit statistics for all distribution models. In general, it can be chosen as the best
model the one which has the smaller the values of the AIC, BIC, KS,W∗ and A∗ statistics
and the larger the values of 
̂ and p-value of the goodness-of-statistics. All computations
are performed by themaxLik and goftest routines in the R program. The details are given
below.

Tables 3 and Figure 11 respectively show analyzing results and estimated plots based
on above distribution models for the data set without the outlier observations. We can see
from the results that the McA distribution may be preferred as the best model in terms of
all comparing criteria. The fits of the LSl, Johnson SB and logit normal distributions are
same.

To see the applicability and efficiency of the LSl distribution model for the outlier situ-
ation, we re-analyze the complete data set for all distributions. We give the estimates and

Table 3. MLEs, standard erros of the estimates (in parentheses), 
̂ and goodness-of-fits statistics for
the data set with without outlier observations (p-value is given in [·]).
Model q̂ μ̂ σ̂ 
̂ AIC BIC A∗ W∗ KS

LSl 152.1421 −2.9729 0.2822 99.1352 −192.2705 −187.6914 0.4304 0.0655 0.0987
(8.3888) (0.0487) (0.0342) [0.8949]

Beta 13.8730 261.9929 99.7729 −195.5457 −192.4930 0.2907 0.0422 0.0831
(0.5031) (5.1197) [0.9731]

Kw 4.3364 285634.1 99.8919 −195.7838 −192.7311 0.1823 0.0235 0.0865
(0.7443) 8.4216 [0.9612]

ETL 4.4632 21252.81 99.9258 −195.8516 −192.7989 0.1785 0.0229 0.0855
(0.0748) (8.3886) [0.9650]

McA 2.3010 59762.03 5.3175 100.1631 −194.3262 −189.7471 0.1719 0.0217 0.0729
(0.9887) (2.2106) (0.2670) [0.9936]

Johnson SB 10.4638 3.5196 99.1352 −194.2705 −191.2178 0.4307 0.0656 0.0988
(1.2755) (0.4252) [0.8944]

LN −2.9729 0.2841 99.1352 −194.2705 −191.2178 0.4308 0.0657 0.0988
(0.0487) (0.0344) [0.8941]

UIG 0.6606 0.0503 98.9600 −193.9200 −190.8673 0.4820 0.0762 0.1044
(0.1602) (0.0024) [0.8523]
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Figure 11. Estimated densities and cdfs for the data set without the outlier points.

Table 4. MLEs, standard errors of the estimates (in parentheses), 
̂ and goodness-of-fits statistics
for the data set with outlier observations (p-value is given in [·]).
Model q̂ μ̂ σ̂ 
̂ AIC BIC A∗ W∗ KS

LSl 2.2687 −2.9254 0.2117 91.8883 −177.7767 −173.0262 0.1870 0.0225 0.0586
(1.0992) (0.0556) (0.0613) [0.9997]

Beta 5.8569 97.1458 86.9760 −169.9519 −166.7848 1.1152 0.1768 0.1636
(0.5166) (6.2564) [0.2903]

Kw 2.1577 373.3878 82.0487 −160.0975 −156.9305 2.2041 0.3651 0.1916
(0.0648) 8.4525 [0.1422]

ETL 2.2617 111.6719 82.4756 −160.9512 −157.7841 2.1134 0.3493 0.1898
(0.0883) (6.2017) [0.1495]

McA 203.8573 90.9007 0.1927 88.5837 −171.1707 −166.4202 0.8289 0.1266 0.1443
(0.4951) (0.7086) (0.0038) [0.4412]

Johnson SB 7.1149 2.4608 89.6573 −175.3146 −172.1476 0.6666 0.1008 0.1322
(0.8440) (0.2864) [0.5554]

logit normal −2.8912 0.4064 89.6573 −175.3146 −172.1476 0.6668 0.1008 0.1321
(0.0677) (0.0479) [0.5553]

UIG 0.3608 0.0567 89.8754 −175.7507 −172.5837 0.6775 0.1064 0.1346
(0.0850) (0.0037) [0.5317]

the values of goodness-of-fits statistics in Table 4. When we see this Table, the LSl dis-
tribution model can be chosen as the best model since it has the smallest values of the
AIC, BIC, KS, W∗ and A∗ statistics and the largest values of 
̂. Further, it has the largest
p-value of the KS statistics among all models. While the data set does not contain outlier
observations, we have chosen the McA model as the best model. Whereas we chose the
LSlmodel as the best model, when the data set contains the outlier observations. Further,
we sketch all fitted densities, cdfs, tail plot and PP plot of fitted LSl distribution for the
complete data set in Figure 11. We observe that the LSl fit is better than the other fits. Fur-
thermore proposedmodel has ensured to successfully captured the large kurtosis, skewness
and heavy tailedness properties for the complete data set which has outliers. Consequently,
the LSl distribution provides a better fit than above all distributions when the data set has
outliers.

The value of the LR statistic for testing the hypothesis H0 : LN against H1 : LSl is
w = 4.4621 with 0.0347 p-value (p¡0.05 ). Hence, one can reject the null hypotheses in
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favor of the LSl distribution at %5 significance level. Thus, the LSl distribution provides
a better representation of the complete data set than logit normal distribution since the
additional parameter of the LSl distribution is essential.

6. Future work and conclusion

Future research would be a flexible and heavy-tailed distribution family based on the LSl
distribution. A method of generating families of distributions is to combine with F(H)

structure which have the cdf as the value of the cdf of the distribution F whose range
is the (0,1) interval H. With this idea, the cdf and pdf of the new flexible family can be
defined by

F
(
x, q,μ, σ , ξ

) = q
∫ 1

0
tq−1�

⎛⎝t
⎡⎣ log

(
G(x;ξ)

1−G(x;ξ)

)
− μ

σ

⎤⎦⎞⎠ dt

Figure 12. Estimated densities, cdfs, distribution tails and PP plot of the LSl distribution for the data set
with the outlier points.
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and

f
(
x, q,μ, σ , ξ

) = q g (x; ξ)

G (x; ξ) [1 − G (x; ξ)] σ

∫ 1

0
tqφ

⎛⎝t
⎡⎣ log

(
G(x;ξ)

1−G(x;ξ)

)
− μ

σ

⎤⎦⎞⎠ dt,

respectively, where x ∈ �, q, σ > 0 and−∞ < μ < ∞ are additional parameters, G(x; ξ)

is the any baseline cdf with parameter vector ξ and g(x; ξ) is the corresponding pdf of
G(x; ξ).

This distribution family will generate strong competitors of the heavy-tailed
distributions.

For the conclusions, we introduced and studied a new heavy-tailed bounded distribu-
tion, defined on (0,1) interval, using slash distribution and logit function structures. We
investigated the general structural properties of the new distribution. The model param-
eters were estimated by maximum likelihood, least-square, and weighted least-square
methods. A simulation study was performed to illustrate the performances of estimators.
Its usefulness on data modeling was shown via an application to the real data set. In sum-
mary, the proposed model can be an alternative to the classical bounded distributions
available in the statistical literature to model rates and proportions.
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Appendices

In here, the components of the score vectors, which belong to three estimationmethods in Section 3,
are given.

Appendix 1. The components of score vector for MLEmethod

The q̂MLE, μ̂MLE and σ̂MLE can be obtained as the solution of the following system of equations:

Uq = n
q

+
n∑
i=1

∫ 1
0 tq φ (t ui) log t dt∫ 1

0 tqφ (t ui) dt
= 0,

Uμ =
n∑

i=1

∫ 1
0 tq+2 (ui/σ) φ (t ui) dt∫ 1

0 tqφ (t ui) dt
= 0

and

Uσ = − n
σ

+
n∑

i=1

∫ 1
0 tq+2 (u2i /σ ) φ (t ui) dt∫ 1

0 tqφ (t ui) dt
= 0.

Appendix 2. The components of score vector for LSEmethod

The q̂LSE, μ̂LSE and σ̂LSE can be obtained as the solution of the following system of equations:

∂QLSE (	)

∂q
=

n∑
i=1

F′
q(x(i), q,μ, σ)

(
F
(
x(i), q,μ, σ

)− i
n + 1

)
= 0,

∂QLSE (	)

∂μ
=

n∑
i=1

F′
μ(x(i), q,μ, σ)

(
F
(
x(i), q,μ, σ

)− i
n + 1

)
= 0



JOURNAL OF APPLIED STATISTICS 23

and
∂QLSE (	)

∂σ
=

n∑
i=1

F′
σ (x(i), q,μ, σ)

(
F
(
x(i), q,μ, σ

)− i
n + 1

)
= 0,

where

F′
q
(
x, q,μ, σ

) = q−1F
(
x, q,μ, σ

)+ q
∫ 1

0
tq−1 �

⎛⎝ t
(
log
(

x
1−x

)
− μ

)
σ

⎞⎠ log t dt,

F′
μ

(
x, q,μ, σ

) = x (x − 1) f
(
x, q,μ, σ

)
and

F′
σ

(
x, q,μ, σ

) = σ−1x (x − 1)
(
log
(

x
1 − x

)
− μ

)
f
(
x, q,μ, σ

)
.

Appendix 3. The components of score vector for WLSEmethod

The q̂WLSE, μ̂WLSE and σ̂WLSE can be obtained as the solution of the following system of equations:

∂QWLSE (	)

∂q
= (n + 2)(n + 1)2

n∑
i=1

(
F
(
x(i), q,μ, σ

)− i
n + 1

) F′
q(x(i), q,μ, σ)

i(n − i + 1)
= 0,

∂QWLSE (	)

∂μ
= (n + 2)(n + 1)2

n∑
i=1

(
F
(
x(i), q,μ, σ

)− i
n + 1

) F′
μ(x(i), q,μ, σ)

i(n − i + 1)
= 0

and

∂QWLSE (	)

∂σ
= (n + 2)(n + 1)2

n∑
i=1

(
F
(
x(i), q,μ, σ

)− i
n + 1

)
F′

σ (x(i), q,μ, σ)

i(n − i + 1)
= 0,

where F′
q(x(i), q,μ, σ), F′

μ(x(i), q,μ, σ) and F′
σ (x(i), q,μ, σ) are defined above.

As it can be seen, since all the above estimating equations contain non-linear functions, it is not
possible to obtain explicit forms of the MLEs, LSEs, and WLSEs directly. Therefore, they have to
be solved by using numerical methods such as the Newton–Raphson and quasi-Newton algorithms
(see [12,29,40]).
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