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THE UNIT GENERALIZED HALF NORMAL DISTRIBUTION: A NEW

BOUNDED DISTRIBUTION WITH INFERENCE AND APPLICATION

Mustafa Ç. Korkmaz1

In this paper, a new distribution defined on (0,1) bounded interval has

been introduced. We define the distribution by transformation of a positive random

variable (rv) with respect to exponential function. Basic distributional properties of

newly defined distribution are studied. We pointed out the different estimation methods

for its parameters’ estimations. We assess the performance of the estimators of these

estimation methods by the simulation study. Application of the proposed distribution to

a real data set shows better fit than many known distributions on the (0,1) interval.
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1. Introduction

The unit distributions defined on the unit interval are applied to model the behavior of
rvs limited to intervals of (0,1) length and they have found applications in fields like health,
biology, meteorology, hydrology, financial modeling and other sciences. The beta distribution
is the well-known statistical distribution to model data sets on the (0,1) interval and is a
convenient and useful model in many areas of statistics. However, its data modeling ability
may be insufficient to explain the data. So, alternative distributions to the beta distribution
have been defined and applied in the literature such as Johnson SB [4], Topp-Leone [12],
Kumaraswamy (Kw) [6], standart two-sided power (STSP) [11], exponentiated Topp Leone
(ETL) [8], unit inverse Gaussian (UIG) [3] and logit slash [5] distributions. The goal of this
paper is to introduce the new alternative distribution defined on the (0,1) interval based
on the transformation of the generalized half normal (GHN) distribution [2]. We are also
motivated to introduce the new distribution because (i) it is capable of modeling increasing,
modified-bathtub (N-shaped) and then bathtub shaped hazard rate; and (ii) the proposed
distribution has distinguished properties of the shapes and provides better fits than some
well known unit distributions. Its some basic properties have been obtained. We consider
the different estimations procedures for its the model parameters. An application of the
model to a real data set is presented and is compared to the fit attained by some other
well-known distributions on the (0,1) interval. The paper is ended with conclusion remarks.

2. Unit Generalized Half Normal (UGHN) distribution

Let the rv Y follow a GHN distribution with probability density function (pdf) and
cumulative distribution function (cdf)

fGHN (y, α, β) = 2αyα−1β−αφ
[(

y
β

)α]
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and

FGHN (y, α, β) = 2Φ

[(
y

β

)α]
− 1 = 1− 2Φ

[
−
(
y

β

)α]

respectively, where y > 0, α, β > 0, φ [·] is the pdf of standard normal distribution and
Φ [·] is the cdf of standard normal distribution. Most of the statistical properties of the
GHN distribution were obtained by [2]. For example, [2] obtained the rth moments of this
distribution as

E (Y r) = βr√
π2r/α

Γ
(
α−r
2α

)
,

where Γ (·) is the gamma function. A rvX has a unit GHN distribution with shape parameter
α and scale parameter β, if its pdf is given by for x ∈ (0, 1) and α, β > 0

f (x, α, β) =
√

2
π

(
α

−x log x

)(
− log x
β

)α
e
− 1

2

(
− log x
β

)2α

=
2α (− log x)

α−1

xβα
φ

[(
− log x

β

)α]
.

(1)
The new pdf can be obtained with transformation of the X = e−Y rv, where Y has GHN
rv. On the other word, a rv X is distributed unit GHN distribution on the interval (0,1) if
its log transformation, − log x, is distributed GHN(α, β). We denote it with UGHN (α, β).
For α = 1, unit half normal distribution is obtained. The corresponding cdf is given by:

F (x, α, β) = 2− 2Φ

[(
− log x

β

)α]
= 2Φ

[
−
(
− log x

β

)α]
= 1− erf

([
− log(x)

β

]α
/
√

2
)
, (2)

where 0 < x < 1 and

erf (z) = 2√
π

∫ z

0

exp
(
−t2

)
dt

is the error function. It is clearly seen that

F (x, α, β) = 1− FGHN (− log x, α, β).

Using (1) and (2), the hazard rate function (hrf) of UGHN distribution is given by

h (x, α, β) = f (x, α, β)/[1− F (x, α, β)].

Analytically, it may be difficult to identify signs of ∂f (x, α, β) /∂x and ∂h (x, α, β) /∂x. So,
we sketched the plots of the pdf and hrf to see their possible shapes. Figure 1 indicates
the possible pdf and hrf shapes and their shape regions of UGHN distribution for changed
α and β parameters. As seen from Figure 1, the shapes of the pdf can be decreasing,
increasing, uni-modal, U-shaped and N-shaped as well as the shapes of the hrf can be
increasing, N-shaped and bathtub shaped.
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Figure 1. The possible pdf and hrf shapes UGHN distribution for selected
parameters values

2.1. Moments

The rth raw moment of the UGHN distribution is given by

µ′r = E (Xr) = E
(
e−rY

)
=

∞∑
i=0

(−r)i
i! E

(
Y i
)

=

∞∑
i=0

(−r)i
i! βi

√
2i/α

π
Γ

(
i+ α

2α

)
.

As it can be seen, µ′r’s can not be expressed in a closed form. The numerical integration can
be applied to obtain the mean and other important related measures. The jth order central
moment can be obtained by the following relationship

µj = E[(X − µ′1)
j
] =

j∑
r=0

(
j

r

)
µ′r(−µ′1)j−r, j = 2, 3, . . .

With this formula, the skewness and kurtosis coefficients are respectively given by√
β1 = µ3µ

−3/2
2

and √
β2 = µ4µ

−2
2 .

However, these above calculations can be easily computed using many packet programs such
as R, Matlab, Maple and Wolfram.

2.2. Stochastic ordering

Let us denote the pdf, cdf, hrf and mean residual life function (mrl) of a positive
continuous rv X by fX(·), FX(·), hX(·) and mX(·), respectively, and those of another pos-
itive continuous rv Y by fY (·), FY (·), hY (·) and mY (·), respectively. We recall some basic
definitions.

A rv X is said to be smaller than a rv Y in the

(i) The stochastic order (X ≤(sto) Y ) if FX(x) ≥ FY (x), ∀ x.
(ii) The hazard rate order (X ≤(hro) Y ) if hX(x) ≥ hY (x), ∀ x.
(iii) The mean residual life order (X ≤(mrlo) Y ) if mX(x) ≤ mY (x), ∀ x.

(iv) The likelihood ratio order (X ≤(lro) Y ) if fX(x)
fY (x) decreases in x.

The below given implications (see [9]) are well justified:[
X ≤(lro) Y

]
⇒
[
X ≤(hro) Y

]
⇒ [X ≤mrl Y ] and

[
X ≤(hro) Y

]
⇒
[
X ≤(sto) Y

]
The following Proposition shows that the UGHN distributions are ordered with re-

spect to different stochastic orderings.
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Proposition 2.1. Let X ∼ UGHN(α, β1) and Y ∼ UGHN(α, β2). If β2 < β1, then[
X ≤(lro) Y

]
and

[
X ≤(hro) Y

]
,
[
X ≤(mrlo) Y

]
,
[
X ≤(sto) Y

]
.

Proof. For any 0 < x < 1, the likelihood ratio is given by

g (x) =
fX(x)

fY (x)
=

(
β1

β2

)α
exp

[
− (− log x)

2α

2

(
1

β2α
1

− 1

β2α
2

)]
.

Thus, taking derivative with respect to x of log g(x), we have

∂ log g (x)

∂x
=

α

x (− log x)

[(
− log x

β1

)α
−
(
− log x

β2

)α] [(− log x

β1

)α
+

(
− log x

β2

)α]
.

If β2 < β1, then ∂ log g(x)
∂x ≤ 0 which purposes that

[
X ≤(lro) Y

]
and

[
X ≤(hro) Y

]
,
[
X ≤(mrlo) Y

]
,[

X ≤(sto) Y
]
. Hence, the proof is completed. �

2.3. Order statistics

Let X1, X2, . . . , Xn be a random sample of size n from the UGHN distribution, and
let X(1) ≤ X(2) . . . ≤ X(n) denote the corresponding order statistics. Then, the pdf of the
rth order statistic, X(r), is defined by

f
(
x(r), α, β

)
= α(− log x)α−1n!

xβα(r−1)!(n−r)!φ
[(
− log x
β

)α]
n−r∑
k=0

(−1)
k

(
n− r
k

)
2r+k

[(
Φ
[
−
(
− log x
β

)α])]r+k−1

respectively, where r = 1, 2, . . . , n. For r = 1 and r = n, we have the pdf of the X(1) =
min{X1, X2, ..., Xn} and X(n) = max{X1, X2, ..., Xn}, respectively.

3. Different Estimation Methods

In this section, we point out various estimators for estimating the unknown parameters
of the UGHN distribution.

3.1. Maximum likelihood estimation

In this subsection, we estimate the parameters of the UGHN distribution by the
method of maximum likelihood estimation (MLE). Let X1, X2, . . . , Xn be a random sample
from the UGHN distribution and

Ξ = (α, β)
T

be the vector of the model parameters. The log-likelihood function for Ξ may be expressed
as

` (Ξ) = n
2 log

(
2
π

)
+ n logα− nα log β −

n∑
i=1

log xi + (α− 1)

n∑
i=1

log (− log xi)

− 1
2β2α

n∑
i=1

(− log xi)
2α
. (3)

The MLEs, α̂MLE and β̂MLE , are obtained by maximizing ` (Ξ).
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3.2. Maximum product spacing (MPS) estimation

The MPS method has been proposed by [1] as approximation to the Kullback-Leibler
measure of information and is based on the idea that maximizing the geometric mean of the

differences. The MPS estimators (MPSE), α̂MPS and β̂MPS ,of the α and β are obtained by

maximizing the geometric mean of the differences. The α̂MPS and β̂MPS are obtained by
maximizing

MPS (Ξ) =
1

n+ 1

n+1∑
i=1

log
[
F (x(i), α, β)− F (x(i−1), α, β)

]
. (4)

3.3. Least squares estimates

Let X(1), X(2), . . . , X(n) be ordered sample of size n from UGHN distribution. Then,
the expectation of the empirical cumulative distribution function is defined as

E
[
F
(
x(i)

)]
=

i

n+ 1
; i = 1, 2, . . . , n.

The least square estimates (LSEs) say, α̂LSE and β̂LSE , of α and β are obtained by mini-
mizing

QLSE (Ξ) =

n∑
i=1

(
F (x(i), α, β)− i

n+ 1

)2

. (5)

3.4. Weighted least squares estimates

Let X(1), X(2), . . . , X(n) be ordered sample of size n from UGHN distribution. The
variance of the empirical cumulative distribution function is defined as

V
[
F
(
x(i)

)]
=

i(n− i+ 1)

(n+ 2)(n+ 1)2
; i = 1, 2, . . . , n.

Then, the weighted least square estimates (WLSEs) say, α̂WLSE and β̂WLSE , of α and β
are obtained obtained by minimizing

QWLSE (Ξ) =

n∑
i=1

(
F (x(i), α, β)− i

n+1

)2

V
[
F
(
x(i)

)] . (6)

3.5. Anderson-Darling Estimation

This estimator is based on Anderson-Darling goodness-of-fits statistics. The Anderson-

Darling (AD) minimum distance estimates, α̂AD and β̂AD, of α and β are obtained by
minimizing

AD (Ξ) = −n−
n∑
i=1

2i−1
n

[
logF

(
x(i), α, β

)
+ log

{
1− F

(
x(n+1−i),, α, β

)}]
. (7)

3.6. The Cramer-von Mises Estimations

The Cramer-von Mises (CVM) minimum distance estimates, α̂CVM and β̂CVM , of α
and β are obtained by minimizing

CVM (Ξ) = 1
12n +

n∑
i=1

[
F
(
x(i), α, β

)
− 2i− 1

2n

]2

. (8)

To solve above equations, Equations (3), (4), (5), (6), (7) and (8) can be optimized either
directly by using the R (optim and maxLik functions), SAS or Ox program or it can be used
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nonlinear optimization methods such as the quasi-Newton algorithm to numerically optimize
`(Ξ), MPS (Ξ), QLSE (Ξ), QWLSE (Ξ), AD (Ξ) and CVM (Ξ) functions.

4. Simulation experiments

In this Section, we perform a simulation study based on graphical results. We gen-
erate N = 1000 samples of size n = 20, 25, . . . , 1000 from UGHN distribution with true
parameter values α = 5 and β = 0.5.Notice that, we can obtain random number from
UGHN distribution by the following algorithm. We can give this procedure as:

(i) set α and β,
(ii) simulate U ∼ Uniform(0, 1),

(iii) compute Y = −β
[
−Φ−1

(
U
2

)]1/α
, then Y follows that GHN(α, β),

(iv) compute X = e−Y , then X follows that UGHN(α, β). We compare above all
estimators based on the empirical biases and mean square errors (MSEs) under varying
sample size. The empirical bias and MSE are calculated by (for h = α, β)

B̂iash = 1
N

∑N

i=1

(
ĥi − h

)
,

and

M̂SEh = 1
N

∑N

i=1

(
ĥi − h

)2

respectively. The results of this simulation study are shown in Figure 2. This Figure shows
that all estimators are to be consistent since the MSE and biases decrease with increasing
sample size. It is clear that the estimates of parameters are asymptotically unbiased. All
empirical means are close true values. Hence, we can say that the performances of all
estimators are close.
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Figure 2. Simulation results

5. Data Analysis

In this section, we consider an application to real data set to show the modeling abil-
ity of the UGHN distribution. The data set consists of the failure times of 20 mechanical
components given in [7]. Recently, this data was analyzed by [10]. Under MLE method, we
fit the UGHN distribution to this data set and compare it with the beta, Johnson SB , Kw,
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Table 1. 
MLEs, standard errors of the estimates (in parentheses), `̂  and goodness-of-

fits statistics for the data set (p value is given in [·])
Model α̂ β̂ ˆ̀ AIC BIC A∗ W ∗ KS

UGHN 6.3815 2.4225 37.4527 -70.9055 -68.9140 0.5181 0.0619 0.1283
(1.2270) (0.0636) [0.8971]

Beta 3.1126 21.8245 27.8813 -51.7626 -49.7711 2.2611 0.3726 0.2537
(1.0287) (7.7997) [0.1521]

Kw 1.5877 21.8673 25.6484 -47.2968 -45.3054 2.6889 0.4681 0.2626
(0.3966) 17.9755 [0.1265]

ETL 1.7369 9.7109 26.1136 -48.2272 -46.2357 2.6147 0.4523 0.2640
(0.3011) (4.0910) [0.1229]

STSP 0.0680 15.0169 35.5132 -67.0264 -65.0350 0.9698 0.1376 0.1758
(0.0004) (3.4249) [0.5667]

Johnson SB 3.8952 1.8605 31.3599 -58.7198 -56.7283 1.5531 0.2307 0.2039
(0.6554) (0.2942) [0.3765]

UIG 0.5803 0.1215 33.0756 -62.1511 -60.1597 1.3777 0.2143 0.1991
(0.1835) (0.0125) [0.4059]

STSP, ETL and UIG distributions based on estimated log-likelihood values ˆ̀, Akaike Infor-
mation Criteria (AIC), Bayesian information criterion (BIC), Kolmogorov-Smirnov (KS),
Cramer-von-Mises, (W ∗) and Anderson-Darling (A∗) goodness of-fit statistics. All compu-
tations are performed by the maxLik routine in the R program. We give the estimates and
the values of goodnes-of-fits statistics in Table 1. When we see this Table, UGHN model
can be chosen as the best model since it has the optimal values of all criteria. Consequently,
the UGHN distribution provides better fit than its competitors.

6. Conclusion

We proposed a new distribution defined on (0,1) interval using a transformation of the
GHN distribution. We investigated distributional properties of the new distribution. The
model parameters were estimated by some estimation methods. A simulation study was
performed to illustrate the performances of all estimators. Its usefulness on data modeling
was shown via an application to the real data set. In summary, the proposed model can be
an alternative to the classical bounded distributions available in the statistical literature to
model rates and proportions.
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