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Abstract: This work proposes a new distribution defined on the unit interval. It is obtained by a novel
transformation of a normal random variable involving the hyperbolic secant function and its inverse.
The use of such a function in distribution theory has not received much attention in the literature,
and may be of interest for theoretical and practical purposes. Basic statistical properties of the newly
defined distribution are derived, including moments, skewness, kurtosis and order statistics. For the
related model, the parametric estimation is examined through different methods. We assess the
performance of the obtained estimates by two complementary simulation studies. Also, the quantile
regression model based on the proposed distribution is introduced. Applications to three real datasets
show that the proposed models are quite competitive in comparison to well-established models.

Keywords: bounded distribution; unit hyperbolic normal distribution; hyperbolic secant function;
normal distribution; point estimates; quantile regression; better life index; dyslexia; IQ; reading accu-
racy modeling

1. Introduction

Over the past twenty years, many statisticians and researchers have focused on propos-
ing new extended or generalized distributions by adding additional parameters to the basic
probability distributions. The common point of these studies is to obtain better inferences
than those of the baseline probability distributions. In this context, especially, the modeling
approaches on the unit interval have recently multiplied since they are related to specific is-
sues such as the recovery rate, mortality rate, daily patient rate, etc. The beta distribution is
the best-known distribution defined over the unit interval for modeling the above measures.
It has great flexibility in the shapes of the probability density function (pdf) and hazard rate
function (hrf). Although it has very flexible forms for data modeling, sometimes it is not
sufficient for modeling and explaining unit datasets. For this reason, new alternative unit
models have been proposed in the statistical distribution literature, including the Johnson
SB [1], Topp-Leone [2], Kumaraswamy [3], standart two-sided power [4], log-Lindley [5],
log-xgamma [6], unit Birnbaum-Saunders [7], unit Weibull [8], unit Lindley [9], unit in-
verse Gaussian [10], unit Gompertz [11], second degree unit Lindley [12], log-weighted
exponential [13], logit slash [14], unit generalized half normal [15], unit Johnson SU [16],
trapezoidal beta [17] and unit Rayleigh [18] distributions. Many of the above distributions
were obtained by transforming the baseline distribution, and they performed better than
the beta distribution in terms of data modeling. For instance, the Johnson SB distribution
was created via logistic transformation of the ordinary normal distribution. In this way,
a very flexible unit normal distribution was obtained over the unit interval. The other men-
tioned unit distributions introduced over the last decade can also be seen as alternatives to
the well-known beta, Johnson SB, Topp-Leone and Kumaraswamy distributions.
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On the other hand, the ordinary regression models explain the response variable for
given certain values of the covariates based on the conditional mean. However, the mean
may be affected by a skewed distribution or outliers in the measurements. Possible solutions
are provided by the quantile regression models proposed by [19], particularly popular for
being less sensitive to outliers than the ordinary regression models.

In line with above, the aim of this study is to introduce a new alternative unit proba-
bility distribution based on the normal distribution. More precisely, we use a new transfor-
mation of the normal distribution based on the hyperbolic secant function. As a matter of
fact, the use of the hyperbolic function has not received enough attention in the published
literature on distribution theory, despite the great interest among students and practition-
ers of the few distributions based on it. Examples include the famous hyperbolic secant
distribution and its generalizations as presented in [20]. In a sense, we show that the
proposed methodology allows us to transport the applicability and working capacity of the
normal distribution to the unit interval. In particular, we develop a new quantile regression
modeling via the re-parameterizing of the new probability distribution in terms of any
quantile. All these aspects are developed in the article through mathematical, graphical
and numerical approaches.

The paper has been set as follows. We define the proposed distribution in Section 2.
Its basic distributional properties are described in Section 3. Section 4 is devoted to the
procedures of the different parametric estimation methods. Two different simulation
studies are given to see the performance of the different estimates of the model parameters
in Section 5. The new quantile regression model based on the proposed distribution and its
residual analysis are introduced by Section 6. Three real data illustrations, one of which
relates to quantile modeling and others to univariate data modeling, are illustrated in
Section 7. Finally, the paper is ended with conclusions in Section 8.

2. The New Unit Distribution and Its Properties

The new unit distribution is defined as follows: Let Y be a random variable such that
Y ∼ N(µ, σ2) where µ ∈ R and σ > 0, and X be the random variable defined by

X = sechY,

where sechy = 2/(ey + e−y) = 2ey/(e2y + 1) ∈ (0, 1) is the hyperbolic secant function for
y ∈ R, also known as the inverse of the hyperbolic cosine function. Then the distribution
of X is called “arcsech” normal distribution and it is denoted by ASHN or ASHN(µ, σ)
when µ and σ are required. To our knowledge, it constitutes a new unit distribution; It
is unlisted in the literature. Before stating the motivations for the ASHN distribution,
the corresponding cumulative distribution function (cdf) and pdf are presented in the
following proposition.

Proposition 1. The cdf and pdf of the ASHN(µ, σ) distribution are given as

F(x, µ, σ) = 2−Φ
(

arcsech x + µ

σ

)
−Φ

(
arcsech x− µ

σ

)
(1)

and

f (x, µ, σ) =
1

σx
√

1− x2

[
φ

(
arcsech x + µ

σ

)
+ φ

(
arcsech x− µ

σ

)]
, (2)

respectively, for x ∈ (0, 1), where arcsech z = log
[(

1 +
√

1− z2
)

/z
]
> 0 is the hyperbolic

arcsecant function (or inverse hyperbolic secant function) for z ∈ (0, 1), Φ(x) and φ(x) are the
cdf and pdf of the N(0, 1) distribution, respectively. For x 6∈ (0, 1), standard completions on these
functions are performed.
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For the sake of presentation, the proof of this result and those of the results to come
are given in Appendix A.

Based on Proposition 1, as a first property, note that, for µ = 0 and x ∈ (0, 1), the cdf
and pdf are reduced to the quite manageable functions:

F(x, 0, σ) = 2
[

1−Φ
(

1
σ

arcsech x
)]

(3)

and

f (x, 0, σ) =
2

σx
√

1− x2
φ

(
1
σ

arcsech x
)

. (4)

In full generality, for x ∈ (0, 1), an alternative formulation for the pdf is

f (x, µ, σ) =

√
2
π

1

σx
√

1− x2
e−

(arcsech x)2+µ2

2σ2 cosh
( µ

σ2 arcsech x
)

, (5)

where cosh y = (ey + e−y)/2 is the hyperbolic cosine function for y ∈ R. Eventually, we
can express the cosh term in Equation (5) as

cosh
( µ

σ2 arcsech x
)
=

1
2

( 1
x
+

√
1
x2 − 1

) µ

σ2

+

(
1
x
+

√
1
x2 − 1

)− µ

σ2
.

Let us now focus on the behavior of f (x, µ, σ) at the boundaries.

• When x tends to 0, since arcsech x ∼ − log x → +∞ and it appears in power 2 the
exponential term, we have f (x, µ, σ)→ 0.

• When x tends to 1, since arcsech 1 = 0, we have

f (x, µ, σ) ∼ 1√
π

1
σ
√

1− x
e−

µ2

2σ2 → +∞.

If σ is large and µ2 ≈ 2σ2, or µ2/2σ2 is large, the point x = 1 appears as a “special
singularity” in the following sense: The function f (x, µ, σ) can decrease to 0 in the
neighborhood of x = 1, then suddenly explodes at x = 1. This phenomenon is only
punctual; this is not a particular disadvantage for statistical modeling purposes.

Also, from Equation (2), it can seen that

f (x,−µ, σ) =
1

σx
√

1− x2

[
φ

(
arcsech x− µ

σ

)
+ φ

(
arcsech x + µ

σ

)]
= f (x, µ, σ).

This means that the pdf shapes of the ASHN(µ, σ) distribution coincide with those of
the ASHN(−µ, σ) distribution. Another remark is that the ASHN distribution can have
one mode into (0, 1), and it corresponds to the x satisfying the following equation:

2σ2x2 − σ2 arctanh(x) +
(√

1− x2
)

arcsech x = 0.

This equation is complex and needs a numerical treatment to determine the value of
the mode, if it exists.

The hrf of the ASHN(µ, σ) distribution is given by

h(x, µ, σ) =
φ
(

arcsech x+µ
σ

)
+ φ

(
arcsech x−µ

σ

)
σx
√

1− x2
[
Φ
(

arcsech x+µ
σ

)
+ Φ

(
arcsech x−µ

σ

)
− 1
] . (6)
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Some plots of f (x, µ, σ) and h(x, µ, σ) are shown in Figure 1.
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Figure 1. The possible pdf and hrf shapes of the ASHN distribution.

From Figure 1, the flexibility of the obtained curves is flagrant; J, reversed J, U and
bell shapes are observed for the pdf, whereas U, N and reversed J shapes are observed for
the hrf. This panel of shapes is a plus for the ASHN distribution, motivating its use for
statistical modeling.

3. Distributional Properties

This section is devoted to some mathematical properties satisfied by the ASHN
distribution.

3.1. A Likelihood Ratio Order Result

The proposition below shows that the ASHN distribution satisfies a strong intrinsic
stochastic order result.

Proposition 2. Let X ∼ ASHN(µ, σ1) and Y ∼ ASHN(µ, σ2) with µ = 0 and σ1 > σ2.
Then X is smaller than Y in likelihood ratio order.

In the general case where µ 6= 0, there is no actual proof of such stochastic ordering
properties. Further, let us mention that the likelihood order is a strong property, implying
various stochastic orders such that the usual stochastic, hazard rate, reversed mean inactiv-
ity time, mean residual life and harmonic mean residual life orders, among others. We may
refer the reader to [21] for all the theory and details about the concept of stochastic ordering.

3.2. Quantile Function

The theoretical definition of the quantile function (qf) of the ASHN(µ, σ) distribution
is the inverse function of Equation (1), that is

Q(y, µ, σ) = F−1(y, µ, σ), y ∈ (0, 1).

In full generality, due to the complexity of F(x, µ, σ), it is not possible to have a
closed-form expression of this qf. However, in the case µ = 0, we arrive at

Q(y, µ, σ) = sech
[
σΦ−1

(
1− y

2

)]
, y ∈ (0, 1),

where Φ−1(x) denotes the inverse function of Φ(x), which also corresponds to the qf of
the N(0, 1) distribution. In this case, the first quartile is obtained as Q1 = Q(1/4, µ, σ) ≈
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sech(σ× 1.150349), the median is given by M = Q(1/2, µ, σ) ≈ sech(σ× 0.6744898),
and the third quartile is defined by Q3 = Q(3/4, µ, σ) ≈ sech(σ× 0.3186394). Further,
from Q(y, µ, σ), one can generate values from the ASHN distribution through basic simu-
lation methods.

3.3. Moments

Let X ∼ ASHN(µ, σ). As prime definition, for any integer r, by denoting as E the
expectation operator, the rth ordinary moment of X is defined by

mr = E(Xr) =
∫ 1

0
xr f (x, µ, σ)dx

=
1
σ

∫ 1

0

xr−1
√

1− x2

[
φ

(
arcsech x + µ

σ

)
+ φ

(
arcsech x− µ

σ

)]
dx.

For the special case µ = 0, one can express it via the qf as

mr =
∫ 1

0
[Q(y, µ, σ)]rdy =

∫ 1

0

{
sech

[
σΦ−1

(
1− y

2

)]}r
dy.

Clearly, there is no simple expression for mr. When the parameters are fixed, it can be
calculated numerically through standard numerical integration techniques. As the main
analytical approach, one can consider a series expansion for mr as stated in the result below.

Proposition 3. The rth moment of X ∼ ASHN(µ, σ) has the following expansion:

mr = 2r

{
+∞

∑
k=0

(
−r
k

)
e(2k+r)µ M

(
−σ(2k + r),

µ

σ

)
+

+∞

∑
k=0

(
−r
k

)
e−(2k+r)µ M

(
−σ(2k + r),−µ

σ

)}
,

where M(x, a) = E[exU I(U > a)] with U ∼ N(0, 1), x ∈ R and a ∈ R, and I(.) denotes the
indicator function.

The function M(x, a) introduced in Proposition 3 can be viewed as the upper incom-
plete version of the moment generating function of the N(0, 1) distribution. Naturally,

it can be bounded from above as M(x, a) ≤ E(exU) = e−
x2
2 for x ∈ R and a ∈ R. By

applying the Markov inequality, a lower is obtained as M(x, a) ≥ exa(1−Φ(a)) for x ≥ 0
and a ∈ R.

Proposition 3 gives an analytical approach for mathematical manipulations or compu-
tations of mr. Further, the following finite sum approximation is an immediate consequence:

mr ≈ 2r

{
K

∑
k=0

(
−r
k

)
e(2k+r)µ M

(
−σ(2k + r),

µ

σ

)
+

K

∑
k=0

(
−r
k

)
e−(2k+r)µ M

(
−σ(2k + r),−µ

σ

)}
,

where K denotes a reasonably large integer.
From the moments, we can derive other measures of interest for X. For instance,

the mean of X is just m1, the variance of X can be determined through the Koenig-Huyghens
formula involving m1 and m2, that is V = m2 − m2

1, the rth central moment defined
by mc

r = E[(X − m1)
r] can be expressed via m1, . . . , mr by using the binomial formula,

the skewness coefficient of X is defined by S = mc
3V−

3
2 and the kurtosis coefficient of X is

given by K = mc
4V−2. These coefficients evaluate the “peakedness” and “tailedness” of the

ASHN distribution, respectively. Figure 2 represents these coefficients while varying the
values for µ and σ.
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Figure 2. The skewness and kurtosis plots of the ASHN distribution.

From Figure 2, we see that the skewness coefficient can be negative and positive,
and the kurtosis coefficient can be either very small or very large. Both have a complex
non-monotonic structure. These facts attest to the ability of the ASHN distribution to adapt
to various situations from heterogeneous unit data.

3.4. Order Statistics

The order statistics are important since they are involved in many statistical modeling
and methods. Here, the basics of them in the context of the ASHN distribution are described.
Let X1, X2, . . . , Xn be a random sample from X ∼ ASHN(µ, σ), and X(1), X(2), . . . , X(n) be
the corresponding order statistics, that is X(1) ≤ X(2) ≤ . . . ≤ X(n). Then, the pdf of X(i)
has the following general expression:

fX(i)
(x, µ, σ) =

n!
(i− 1)!(n− i)!

f (x, µ, σ)[F(x, µ, σ)]i−1[1− F(x, µ, σ)]n−i. (7)

Owing to Equations (1) and (2), for x ∈ (0, 1), we obtain

fX(i)
(x, µ, σ) =

n!
(i− 1)!(n− i)!

1

σx
√

1− x2

[
φ

(
arcsech x + µ

σ

)
+ φ

(
arcsech x− µ

σ

)]
×[

2−Φ
(

arcsech x + µ

σ

)
−Φ

(
arcsech x− µ

σ

)]i−1
×[

Φ
(

arcsech x + µ

σ

)
+ Φ

(
arcsech x− µ

σ

)
− 1
]n−i

.

The pdf of the extreme statistics X(1) and X(n) are derived by substituting i = 1 and
i = n in the above equation, respectively. Other important results are that

E[F(X(i), µ, σ)] =
i

n + 1
, V[F(X(i), µ, σ)] =

i(n− i + 1)
(n + 2)(n + 1)2 . (8)

The order statistics, as well as their mean and variance, will be useful in the next section.

4. Different Methods of the Parameter Estimation

In this section, we point out some different estimators to estimate the parameters of
the ASHN model. More precisely, the maximum likelihood, maximum product spacings,
least squares, weighted least squares, Anderson-Darling and Cramér-von Mises estimates
are derived.
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4.1. Maximum Likelihood Estimation

Let X1, X2, . . . , Xn be a random sample from the ASHN distribution with observed
values x1, x2, . . . , xn, and Θ = (µ, σ)T be the vector of the model parameters. Then, the log-
likelihood function is given by

` = `(Θ) = −n log σ− n
2

log(2π)−
n

∑
i=1

log
[

xi

√
1− x2

i

]
− 1

2σ2

n

∑
i=1

(arcsech(xi)− µ)2

+
n

∑
i=1

log
[

1 + e−
2µ

σ2 arcsech(xi)
]

.
(9)

Based on `(Θ), the maximum likelihood estimations (MLEs) of µ and σ, say µ̂ and σ̂,
respectively, are obtained as

(µ̂, σ̂) = argmaxΘ∈R×(0,+∞)`(Θ).

Mathematically, this is equivalent to solve the following equations with respect to
the parameters:

∂`(Θ)

∂µ
=

1
σ2

n

∑
i=1

(arcsech(xi)− µ)− 2
σ2

n

∑
i=1

arcsech(xi)e
− 2µ

σ2 arcsech(xi)

1 + e−
2µ

σ2 arcsech(xi)
= 0 (10)

and

∂`(Θ)

∂σ
= −n

σ
+

1
σ3

n

∑
i=1

(arcsech(xi)− µ)2 +
4µ

σ3

n

∑
i=1

arcsech(xi)e
− 2µ

σ2 arcsech(xi)

1 + e−
2µ

σ2 arcsech(xi)
= 0. (11)

From Equation (10), we have

1
2

n

∑
i=1

(arcsech(xi)− µ) =
n

∑
i=1

arcsech(xi)e
− 2µ

σ2 arcsech(xi)

1 + e−
2µ

σ2 arcsech(xi)
. (12)

Substituting the right hand side of Equation (12) in Equation (11), the following
equation is obtained for the desired solution for σ2:

σ2 =
1
n

[
n

∑
i=1

(arcsech(xi)− µ)2 + 2µ
n

∑
i=1

(arcsech(xi)− µ)

]
=

1
n

n

∑
i=1

(arcsech(xi))
2 − µ2. (13)

Then, substituting Equation (13) in Equation (9), we obtain the profile log-likelihood
according to µ as

`(µ) =− n
2

log

[
1
n

n

∑
i=1

(arcsech(xi))
2 − µ2

]
− n

2
log(2π)−

n

∑
i=1

log
[

xi

√
1− x2

i

]

+
n

∑
i=1

log

1 + exp

−2µarcsech(xi)

(
1
n

n

∑
i=1

(arcsech(xi))
2 − µ2

)−1



−

n
∑

i=1
(arcsech(xi)− µ)2

2
(

1
n

n
∑

i=1
(arcsech(xi))

2 − µ2
) .
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Following the normal routine of the parameter estimation based on the profile log-
likelihood function, we have

∂`(µ)

∂µ
=

nµ

1
n

n
∑

i=1
(arcsech(xi))

2 − µ2

−
µ

n
∑

i=1
(arcsech(xi)− µ)2 −

n
∑

i=1
(arcsech(xi)− µ)

(
1
n

n
∑

i=1
(arcsech(xi))

2 − µ2
)

(
1
n

n
∑

i=1
(arcsech(xi))

2 − µ2
)2

−
n

∑
i=1

2 arcsech(xi)

(
1
n

n
∑

i=1
(arcsech(xi))

2 + 4µ2
)

exp

{
−2µarcsech(xi)

(
1
n

n
∑

i=1
(arcsech(xi))

2 − µ2
)−1

}
(

1
n

n
∑

i=1
(arcsech(xi))

2 − µ2
)2
(

1 + exp

{
−2µarcsech(xi)

(
1
n

n
∑

i=1
(arcsech(xi))

2 − µ2
)−1

}) .

Hence, the numerical methods are needed to obtain µ̂. Once µ̂ is obtained, the MLE σ̂
is obtained by taking the square root of σ̂2 as governed by Equation (13).

The well-known theory of the maximum likelihood method states that, under mild
regularity conditions, one can use the bivariate normal distribution with mean µ = (µ, σ)
and covariance matrix I−1, where

I = −


∂2

∂µ2 `(Θ)
∂2

∂µ∂σ
`(Θ)

∂2

∂µ∂σ
`(Θ)

∂2

∂σ2 `(Θ)


∣∣∣∣∣∣∣∣
Θ=Θ̂

,

to construct confidence intervals or likelihood ratio test on the parameters. The components
of I can be derived through standard derivatives formula. Then, approximate 100(1− ϑ)%
confidence intervals for µ and σ can be determined by µ̂± zϑ/2sµ̂ and σ̂± zϑ/2sσ̂, respec-
tively, where zϑ/2 is the upper (ϑ/2)th percentile of the standard normal distribution, sµ̂ is
the first diagonal element of I−1 and sσ̂ is its second diagonal element. Thus defined,
they are the (asymptotic) standard errors (SEs) of µ̂ and σ̂, respectively.

4.2. Maximum Product Spacing Estimation

Cheng and Aming [22] have proposed the maximum product spacing (MPS) method
as an alternative to the maximum likelihood method. It is based on the idea that differences
(spacings) between the values of the cdf at consecutive data points should be identically
distributed. Now, let X(1), X(2), . . . , X(n) be the order statistics from the ASHN distribution
with sample size n, and x(1), x(2), . . . , x(n) be the ordered observed values. Then, the MPS
estimates (MPSEs) of µ and σ, say µ̂MPS and σ̂MPS, respectively, are given as

(µ̂MPS, σ̂MPS) = argmaxΘ∈R×(0,+∞)MPS(Θ),

where

MPS(Θ) =
1

n + 1

n+1

∑
i=1

log
[

F(x(i), µ, σ)− F(x(i−1), µ, σ)
]
. (14)

They are also given as the simultaneous solutions of the following equations:

∂MPS(Θ)

∂µ
=

1
n + 1

n+1

∑
i=1

[
F
′
µ(x(i), µ, σ)− F

′
µ(x(i−1), µ, σ)

F(x(i), µ, σ)− F(x(i−1), µ, σ)

]
= 0
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and
∂MPS(Θ)

∂σ
=

1
n + 1

n+1

∑
i=1

[
F
′
σ(x(i), µ, σ)− F

′
σ(x(i−1), µ, σ)

F(x(i), µ, σ)− F(x(i−1), µ, σ)

]
= 0,

where

F
′
µ(x, µ, σ) =

1
σ

[
φ

(
arcsech x− µ

σ

)
− φ

(
arcsech x + µ

σ

)]
and

F
′
σ(x, µ, σ) =

1
σ2

[
(arcsech x− µ)φ

(
arcsech x− µ

σ

)
+ (arcsech x + µ)φ

(
arcsech x + µ

σ

)]
.

4.3. Least Squares Estimation

The least square estimates (LSEs) of µ and σ, say µ̂LSE and σ̂LSE, respectively, are
obtained as

(µ̂LSE, σ̂LSE) = argminΘ∈R×(0,+∞)LSE(Θ),

where

LSE(Θ) =
n

∑
i=1

(
F(x(i), µ, σ)− E

[
F(X(i), µ, σ)

])2
, (15)

where, by Equation (8), E
[

F(X(i), µ, σ)
]
= i/(n + 1) for i = 1, 2, . . . , n. Then, µ̂LSE and

σ̂LSE are solutions of the following equations:

∂LSE(Θ)

∂µ
= 2

n

∑
i=1

F
′
µ(x(i), µ, σ)

(
F(x(i), µ, σ)− i

n + 1

)
= 0

and
∂LSE(Θ)

∂σ
= 2

n

∑
i=1

F
′
σ(x(i), µ, σ)

(
F(x(i), µ, σ)− i

n + 1

)
= 0,

where F
′
µ(x(i), µ, σ) and F

′
σ(x(i), µ, σ) are mentioned before.

4.4. Weighted Least Squares Estimation

Similarly to LSEs, the weighted least square estimates (WLSEs) of µ and σ, say µ̂WLSE
and σ̂WLSE, respectively, are given as

(µ̂WLSE, σ̂WLSE) = argminΘ∈R×(0,+∞)WLSE(Θ),

where

WLSE(Θ) =
n

∑
i=1

1

V
[

F(X(i), µ, σ)
](F(x(i), µ, σ)− E

[
F(X(i), µ, σ)

])2
, (16)

where, by Equation (8), E
[

F(X(i), µ, σ)
]
= i/(n + 1) and V

[
F(X(i), µ, σ)

]
= i(n− i + 1)/

[(n + 2)(n + 1)2] for i = 1, 2, . . . , n. Then, µ̂WLSE and σ̂WLSE are solutions of the follow-
ing equations:

∂WLSE(Θ)

∂µ
= 2

n

∑
i=1

(n + 2)(n + 1)2

i(n− i + 1)

(
F(x(i), µ, σ)− i

n + 1

)
F
′
µ(x(i), µ, σ) = 0

and

∂WLSE(Θ)

∂σ
= 2

n

∑
i=1

(n + 2)(n + 1)2

i(n− i + 1)

(
F(x(i), µ, σ)− i

n + 1

)
F
′
σ(x(i), µ, σ) = 0.
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4.5. Anderson-Darling Estimation

The Anderson-Darling minimum distance estimates (ADEs) of µ and σ, say µ̂AD and
σ̂AD, respectively, are determined as

(µ̂AD, σ̂AD) = argminΘ∈R×(0,+∞)AD(Θ),

where

AD(Θ) = −n−
n

∑
i=1

2i− 1
n

{
log[F(x(i), µ, σ)] + log

[
1− F(x(n+1−i), µ, σ)

]}
. (17)

Therefore, µ̂AD and σ̂AD can be obtained as the solutions of the following system
of equations:

∂AD(Θ)

∂µ
= −

n

∑
i=1

2i− 1
n

[
F′µ(x(i), µ, σ)

F(x(i), µ, σ)
−

F′µ(x(n+1−i), µ, σ)

1− F(x(n+1−i), µ, σ)

]
= 0

and
∂AD(Θ)

∂σ
= −

n

∑
i=1

2i− 1
n

[
F′σ(x(i), µ, σ)

F(x(i), µ, σ)
−

F′σ(x(n+1−i), µ, σ)

1− F(x(n+1−i), µ, σ)

]
= 0.

4.6. The Cramér-von Mises Estimation

The Cramér-von Mises minimum distance estimates (CVMEs) of µ and σ, say µ̂CVM
and σ̂CVM, respectively, are specified as

(µ̂CVM, σ̂CVM) = argminΘ∈R×(0,+∞)CVM(Θ),

where

CVM(Θ) =
1

12n
+

n

∑
i=1

[
F(x(i), µ, σ)− 2i− 1

2n

]2
. (18)

Therefore, the estimates µ̂CVM and σ̂CVM can be obtained as the solutions of the
following system of equations:

∂CVM(Θ)

∂µ
= 2

n

∑
i=1

(
F(x(i), µ, σ)− 2i− 1

2n

)
F′µ(x(i), µ, σ) = 0

and
∂CVM(Θ)

∂σ
= 2

n

∑
i=1

(
F(x(i), µ, σ)− 2i− 1

2n

)
F′σ(x(i), µ, σ) = 0.

All the presented equations contain complex non-linear functions; it is not possible to
obtain explicit forms of all estimates. Therefore, they need to be solved through numer-
ical methods such as the Newton-Raphson and quasi-Newton algorithms. In addition,
Equations (9) and (14)–(18) can be also optimized directly by using the software such as
R (constrOptim and optim), S-Plus and Matlab to numerically optimize `(Θ), MPS(Θ),
LSE(Θ), WLSE(Θ), AD(Θ) and CVM(Θ) functions.

5. Empirical Simulations

In this section, we perform two graphical simulation studies to see the performance
of the above estimates with varying sample size n. We generate N = 1000 samples of
size n = 20, 25, . . . , 1000 from the ASHN distribution based on the following parameter
values: (µ = 2, σ = 2) and (µ = 0.5, σ = 0.5) for the first and second simulation studies,
respectively. The random numbers generation is obtained by the qf of the model. All the
estimates based on the estimation methods are obtained by using the constrOptim function
in the R program. Further, we calculate the empirical mean, bias and mean square error
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(MSE) of the estimates for comparisons between the methods. For ε = µ or ε = σ, the bias
and MSE associated to ε are calculated by

Biasε(n) =
1
N

N

∑
i=1

(ε− ε̂i), MSEε(n) =
1
N

N

∑
i=1

(ε− ε̂i)
2,

respectively, where i is related to the ith sample. We expect that the empirical means are
close to true values when the MSEs and biases are near zero. The results of this simulation
study are shown in Figures 3 and 4.

Figures 3 and 4 show that all estimates are consistent since the MSE and biasedness
decrease to zero with increasing sample size as expected. One can state that all estimates
are asymptotic unbiased. According to these two simulation studies, the amount of the
biases and MSEs of the MLE method are smaller than those of the other methods for both
parameters. Therefore, the MLE method can be chosen as more reliable than other methods
of the newly defined model. Generally, the performances of all estimates are close when
sample size increases. The similar results can be seen for different parameter values.
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Figure 3. The results related to µ (top) and σ (bottom) for the first simulation study.
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Figure 4. The results related to µ (top) and σ (bottom) for the second simulation study.

Moreover, we also give simulation study of the MLEs based on their 95% confidence
intervals. In this regard, we use the coverage probability (CP) criteria defined by

CPε(n) =
1
N

N

∑
i=1

I(ε̂i ± 1.95996sε̂i ),

where sε̂i is the SE of the MLE ε̂i. Figure 5 displays the obtained simulation results. From
Figure 5, as expected, for each parameter, the CPs converge to the nominal value, that is
0.95, when sample size increases. The simulation results verify the consistency property of
the MLEs.
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Figure 5. Estimated CPs for the first (left) and second (right) simulation studies.
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6. A New Quantile Regression Model Based on the Special ASHN Distribution
6.1. Motivation

The quantile regression has been developed in the seminal work of [19] as a way
to model the conditional quantiles of an outcome variable as a function of covariates
(regressors). Since this analysis aims to model the conditional quantiles of the response
variable, it is a good robust alternative model to the ordinary LSE model, which estimates
the conditional mean of the response variable. This is because the mean is affected by
a skewed distribution or outliers in the measurements. Hence, the quantile response
regression model will be less sensitive to outliers than the mean response regression model.

On the other hand, if the support of the response variable is defined on the unit
interval, one can use an unit regression model based on an unit distribution for modeling
the conditional mean or quantiles of the response variable via covariates. The beta regres-
sion [23] model first comes to mind to relate to continuous unit mean response variables
in the unit interval with covariates. One may also see [12,13,24–26] for alternative unit
mean response regression models to beta regression models. If the conditional dependent
variable is skewed or has outliers, the quantile response modeling may be more appropriate
when compared with the mean response modeling. The model is also motivated by the
natural idea of replacing mean by median as a central tendency measure when the response
data is severely asymmetric [27].

On the other hand, with the re-parameterizing the probability distribution as a func-
tion of the quantile approach, the Kumaraswamy [28,29] and unit Weibull [30] quantile
regression models have been proposed for modeling the conditional quantiles of the unit
response. One may also refer to [27,31–34] for alternative quantile response regression
models. On the basis of these references, we want to propose an alternative quantile
regression model considering a parameterization of the ASHN distribution in terms of its
any quantile. More precisely, the re-parameterizing process is applied via a scale parameter
as being a quantile of the of the ASHN distribution.

6.2. Proposed Quantile Regression Model

Now, we can focus on introducing an alternative quantile regression model based
on a special ASHN(µ, σ) distribution. Since the ASHN distribution has not an explicit
qf, we propose another distribution based on a special ASHN distribution. We call it
exponentiated ASHN (EASHN) distribution. Its cdf and pdf are given by

G(y, α, σ) =

[
2− 2Φ

(
1
σ

arcsech y
)]α

(19)

and

g(y, α, σ) =
2α

σy
√

1− y2
φ

(
1
σ

arcsech y
)[

2− 2Φ
(

1
σ

arcsech y
)]α−1

,

respectively, where y ∈ (0, 1) and α, σ > 0. For y 6∈ (0, 1), standard completions on
these functions are performed. The cdf in Equation (19) is obtained as the exponentiated
ASHN(0, σ) distribution, that is G(y, α, σ) = [F(y, 0, σ)]α. We can call this model as
Lehmann type I ASHN model.

The qf of the EASHN distribution is given by

Q(u, α, σ) = sech

[
σΦ−1

(
1− u

1
α

2

)]
,

where u ∈ (0, 1). We are also motivated with the quantile regression modeling thanks to its
manageable qf. Then, the pdf of the EASHN distribution can be re-parameterized in terms of
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its uth quantile as η = Q(u, α, σ). Let σ = arcsech η/Φ−1
[
(2− u1/α)/2

]
. Then, the cdf and

pdf of the re-parameterized distribution are given by

G(y, α, η) =

2− 2Φ

Φ−1
(

1− u
1
α /2

)
arcsech η

arcsech y

α

(20)

and

g(y, α, η) =
2αΦ−1

(
1− u

1
α /2

)
arcsech ηy

√
1− y2

φ

Φ−1
(

1− u
1
α /2

)
arcsech η

arcsech y


×

2− 2Φ

Φ−1
(

1− u
1
α /2

)
arcsech η

arcsech y

α−1

,

(21)

respectively, where α > 0 is the shape parameter. The parameter η ∈ (0, 1) represents
the quantile parameter and it is assumed that u is known. A random variable Y having
the pdf in Equation (21) is denoted by Y ∼ EASHN(α, η, u). Some possible shapes of
the re-parameterized model are shown in Figure 6. We see that the possible pdf shapes
of the EASHN distribution are the skewed shapes as well as U-shapes, N-shapes and
increasing shapes.
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Figure 6. The pdf shapes of the re-parameterized EASHN distribution.

We present the quantile regression model based on the EASHN distribution with pdf
in Equation (21). Let y1, y2, . . . , yn be n random observations from the re-parameterized
distribution such that, for i = 1, . . . , n, yi is a realization of Y ∼ EASHN(α, ηi, u), with un-
known parameters ηi and β, recalling that the parameter u is known. Then the EASHN
quantile regression model is defined as

g(ηi) = xiβ
T ,

where β =
(

β0, β1, β2, . . . , βp
)T and xi =

(
1, xi1, xi2, xi3, . . . , xip

)
are the unknown regres-

sion parameter vector and known ith vector of the covariates. Thus defined, g(x) is the
link function which is used to link the covariates to conditional quantile of the response
variable. For instance, when u = 0.5, the covariates are linked to conditional median of the
response variable. The choice of the appropriate link function should be done considering
the domain of the distribution.
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6.3. Parameter Estimation

The unknown parameters of the EASHN quantile regression model are obtained by
means of the MLE method. Since the EASHN distribution is defined on the unit interval,
we use the logit-link function, that is

g(ηi) = logit(ηi) = log
(

ηi
1− ηi

)
= xiβ

T ,

implying that

ηi =
exp

(
xiβ

T
)

1 + exp
(

xiβ
T
) . (22)

By putting Equation (22) into Equation (21), the log-likelihood function of the EASHN
quantile regression model is

`(Ω) = n log 2− n
2

log(2π) + n log α + n log

[
Φ−1

(
1− u

1
α

2

)]

−
n

∑
i=1

log
[

arcsech(ηi)

(
yi

√
1− y2

i

)]
− 1

2

[
Φ−1

(
1− u

1
α

2

)]2 n

∑
i=1

(
arcsech(yi)

arcsech(ηi)

)2

(23)

+ (α− 1)
n

∑
i=1

log

[
2− 2Φ

(
arcsech(yi)

arcsech(ηi)
Φ−1

(
1− u

1
α

2

))]
,

where Ω = (α, β) denotes the unknown parameter vector. Since Equation (23) includes
nonlinear function according to model parameters, it can be maximized directly by software
such as R, S-Plus, and Mathematica. Note that, when u = 0.5, this is equivalent to modeling
the conditional median. Under mild conditions of regularity, the asymptotic distribution
of
(
Ω̂−Ω

)
is multivariate normal Np+1

(
0, J−1), where variance-covariance matrix J−1 is

defined by the inverse of the expected information matrix. For practical aims, we can use
the observed information matrix instead of J. The elements of this observed information
matrix are evaluated numerically by the software. We use the maxLik function implemented
in the R software to maximize Equation (23) (see [35]). This function also gives asymptotic
SEs numerically, which are obtained by the observed information matrix.

6.4. Residual Analysis

Residual analysis may be necessary to verify if the regression model is suitable. To see
this, we work with the randomized quantile residuals [36] and the Cox-Snell residuals [37].

For i = 1, . . . , n, the ith randomized quantile residual is defined by

r̂i = Φ−1[G(yi, α̂, η̂i)],

where G(y, α, η) is the cdf of the re-parameterized EASHN distribution specified by
Equation (20) and η̂i is defined by Equation (22) with β̂ replacing β. If the fitted model
successfully processes the dataset, the distribution of the randomized quantile residuals
will distribute the standard normal distribution.

Alternatively, for i = 1, . . . , n, the ith Cox and Snell residual is given by

êi = − log[1− G(yi, α̂, η̂i)].

If the model fits to data accordingly, the distribution of the Cox and Snell residuals
will distribute a standard exponential distribution, that is with scale parameter 1.
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7. Data Analysis

To emphasize the importance of the modeling ability of the ASHN normal distribu-
tion, this section is devoted to three real data applications for both univariate data and
quantile modelings.

7.1. Univariate Real Data Modeling

Here, we provide applications to two real datasets to prove empirically the potentiality
of the ASHN model. The proposed model is compared with some well-known two-
parameter unit distributions in the literature, namely:

• Beta distribution.
The two-parameter beta pdf is given by

fBeta(x, µ, σ) =
1

B(µ, σ)
xµ−1(1− x)σ−1, x ∈ (0, 1),

where µ > 0 and σ > 0 are shape parameters, and B(µ, σ) is the classical beta function.

• Kumaraswamy (Kw) distribution (see [3]).
The two-parameter Kw pdf is expressed as

fKw(x, µ, σ) = µσxµ−1(1− xµ)σ−1, x ∈ (0, 1),

where µ > 0 and σ > 0 are shape parameters.

• Johnson SB distribution (see [1]).
The two-parameter Johnson SB pdf is given by

fSB(x, µ, σ) =
σ

x(1− x)
φ

[
σ log

(
x

1− x

)
+ µ

]
, x ∈ (0, 1),

where µ ∈ R and σ > 0 are shape parameters, and φ(·) is the pdf of the standard
normal distribution. For each model, we estimate the unknown parameters using the
maximum likelihood approach.

Two datasets are considered. For them, in order to determine the optimum model,
we compute the estimated log-likelihood values ˆ̀, Akaike Information Criteria (AIC),
Bayesian Information Criteria (BIC), Kolmogorov-Smirnov (KS), Anderson-Darling (A∗)
and Cramér-von Mises (W∗) goodness-of-fit statistics for all models. In general, it can be
chosen as the best model the one with the smaller values of the AIC, BIC, KS, A∗ and W∗

statistics and the larger values of ˆ̀. The p-value of the KS test is also considered; more it is
close to 1, better is the model. All computations are performed by using the maxLik [35]
and goftest routines in the R software.

7.1.1. Data Analysis I

First, we consider an application to real dataset to show the modeling ability of
the proposed distribution. The dataset introduces failure times of the 20 mechanical
components given in [38]. The data are: 0.067, 0.068, 0.076, 0.081, 0.084, 0.085, 0.085, 0.086,
0.089, 0.098, 0.098, 0.114, 0.114, 0.115, 0.121, 0.125, 0.131, 0.149, 0.160, 0.485. Recently,
these data was analyzed via different approaches by [15,39,40].

Table 1 lists the MLEs of the parameters and their SEs from the above fitted models
and the values of the statistics: ˆ̀, AIC, BIC, A∗, W∗ and KS goodness-of-fit statistics. As it
can be seen, the results indicate that the ASHN model has the smallest values of these
statistics among the fitted models, and therefore it could be considered as the best model.
The p-value of the KS test confirms this claim.

The plots of the fitted pdfs and cdfs are displayed in Figure 7. These plots show that
the ASHN model provides the correct fit to these data compared to other models. Further,
it captures data skewness and kurtosis better than other models.
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Table 1. MLEs, SEs of the estimates (in parentheses), ˆ̀ and goodness-of-fits statistics for the first
dataset (p-value is given in [·]).

Model µ̂ σ̂ ˆ̀ AIC BIC A∗ W∗ KS

ASHN 2.9179 0.4322 33.2443 −62.4885 −60.4970 1.1850 0.1664 0.1746
(0.0966) (0.0684) [0.5754]

Beta 3.1126 21.8245 27.8813 −51.7626 −49.7711 2.2611 0.3726 0.2537
(1.0287) (7.7997) [0.1521]

Kw 1.5877 21.8673 25.6484 −47.2968 −45.3054 2.6889 0.4681 0.2626
(0.3966) 17.9755 [0.1265]

Johnson SB 3.8952 1.8605 31.3599 −58.7198 −56.7283 1.5531 0.2307 0.2039
(0.6554) (0.2942) [0.3765]
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Figure 7. The fitted plots for the first dataset.

Figure 8 shows plots of the profile log-likelihood (PLL) functions for the parameters
µ and σ based on the first dataset. We observe that the likelihood equations have unique
solutions for the MLEs.
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Figure 8. The plots of the PLL functions for the first dataset.
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7.1.2. Data Analysis II

Here, the Better Life Index (BLI) dataset is used to illustrate the usefulness of the
ASHN distribution. The dataset can be found via link https://stats.oecd.org/index.asp
x?DataSetCode=BLI2015. The BLI dataset is used to classify the OECD (Organisation for
Economic Co-operation and Development) countries with 11 indicators and 24 variables as
well as non-OECD economies such as Brazil and Russia. Here, we use an indicator that
is entitled Job security as the dataset. This indicator presents the probability to become
unemployed. Recently, these data was analyzed by [14]. We give the summary statistics of
the dataset in Table 2. The data are right-skewed and have a consequent kurtosis.

Table 2. Some summary statistics of the second dataset.

Minimum Mean Median Maximum Variance Skewness Kurtosis n

0.0240 0.0567 0.0515 0.1780 0.0007 2.7117 12.0173 36

Table 3 lists the MLEs, their SEs, ˆ̀ and goodness-of-fits statistics from the fitted models
for this dataset. Table 3 shows that the proposed model could be chosen as the best model
among the fitted models since it has the lowest values of the AIC, BIC, A∗, W∗ and KS
statistics and have the biggest ˆ̀ value. It also has the biggest p-value of the KS test.

Table 3. MLEs, SEs of the estimates (in parentheses), ˆ̀ and goodness-of-fits statistics for the second
dataset (p-value is given in [·]).

Model µ̂ σ̂ ˆ̀ AIC BIC A∗ W∗ KS

ASHN 3.6422 0.3791 90.1076 −176.2152 −173.0481 0.5963 0.0895 0.1261
(0.0632) (0.0447) [0.6162]

Beta 5.8569 97.1458 86.9760 −169.9519 −166.7848 1.1152 0.1768 0.1636
(0.5166) (6.2564) [0.2903]

Kw 2.1577 373.3878 82.0487 −160.0975 −156.9305 2.2041 0.3651 0.1916
(0.0648) 8.4525 [0.1422]

Johnson SB 7.1149 2.4608 89.6573 −175.3146 −172.1476 0.6666 0.1008 0.1322
(0.8440) (0.2864) [0.5554]

The plots of the fitted pdfs and cdfs are displayed in Figure 9. These plots show that
the ASHN model provides the good fit to these data compared to the other models.
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Figure 9. The fitted plots for the second dataset.
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Figure 10 shows plots of PLL functions for the parameters µ and σ based on the second
dataset. From this figure, we see that the likelihood equations have unique solutions for
the MLEs.
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Figure 10. The plots of the PLL functions for the second dataset.

7.2. The Quantile Modeling Application of the Reading Accuracy with the Dyslexia and
Intelligence Quotient

Here, a real data application is given in order to see the applicability of the newly
defined regression model. We compare its results with the unit Weibull quantile regression
model [30]. The quantile parameter u has been taken as 0.5 to model the median for
regression models. The pdf of the unit Weibull quantile distribution is given by

f (y, α, µ) =
α log(0.5)

y log η

(
log y
log η

)α−1
0.5(log y/ log η)α

, y ∈ (0, 1),

where η ∈ (0, 1) is the median and α > 0 is the shape parameter. The dataset consists
of the reading accuracy for nondyslexic and dyslexic Australian children and contains
44 observations on 3 variables. The variable of interest is accuracy providing the scores on
a test of reading accuracy taken by 44 children, which is predicted by the two regressors:
dyslexia and nonverbal intelligence quotient (IQ). The dataset has been collected by [41],
and analyzed by [42,43] via the beta regression modeling based on the data mean modeling.
It is noticed that the original reading accuracy score has been transformed by [43] so that
accuracy is in the open unit interval. Further, this dataset can be found easily via betareg
function [42] in the R software.

The aim is to associate the reading accuracy values (y) with covariates. The response
variable and covariates are:

• y: reading score;
• x1: Is the child dyslexic? (0 for no, 1 for yes);
• x2: nonverbal intelligence quotient (IQ, converted to z scores).

The regression model based on ηi is given by

logit(ηi) = β0 + β1xi1 + β2xi2, i = 1, 2, . . . , 44,

where ηi denotes the median for the unit Weibull and EASHN models.
The results of the EASHN and unit Weibull regression models with model selection

criteria are given in Table 4. As seen from the values of AIC and BIC statistics, the proposed
regression model has lower values than those of the unit Weibull regression model. So,
one can say that the EASHN regression model exhibits better modeling ability than the
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unit Weibull regression model. Additionally, according to the estimated parameters of the
EASHN regression model, the parameters β1 and β2 have been seen statistically significant
at any usual level. Hence, it is concluded that, when IQ increases, the reading accuracy
increases also. However, the reading accuracy of the children with no dyslexia is higher
than those of the children with dyslexia as expected.

Table 4. The results of the EASHN and unit Weibull regression models with model selection criteria.

Parameters
EASHN Unit-Weibull

Estimate SE p-Value Estimate SE p-Value

β0 2.2810 0.0025 <0.001 2.4045 0.2589 <0.001
β1 −1.0490 0.0028 <0.001 −1.3362 0.3751 0.0003
β2 0.5918 0.00001 <0.001 0.4837 0.2453 0.0486
α 0.1260 0.00001 <0.001 0.9795 0.1193 <0.001

` 37.9466 37.3185

AIC −67.8934 −66.6369

BIC −60.7566 −59.5001

Figures 11 and 12 display the QQ plots of the randomized quantile residuals and
PP plot of the Cox-Snell residuals for both regression models, respectively. These figures
indicate that the fit of the EASHN regression model is better than the one of the unit
Weibull model.
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Figure 11. The QQ plot of the randomized quantile residuals.
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Figure 12. The PP plots of the Cox-Snell residuals based on the regression application.

Since the randomized quantile residuals have standard normal distributions, one
may see whether they fit this corresponding distribution. The KS, A∗ and W∗ results are
given in Table 5. It is clear that the results based on the EASHN quantile regression model
of the randomized quantile residuals are more suitable than those of the unit Weibull
regression model.

Table 5. The goodness-of-fit results of the randomized quantile residuals for the regression models.

Models KS p-Value A∗ p-Value W∗ p-Value

EASHN 0.0849 0.9093 0.4211 0.8267 0.0502 0.8775
Unit-Weibull 0.1159 0.5955 0.4989 0.7470 0.0720 0.7419

8. Conclusions

We define a new unit model, called “arcsech” normal distribution, in order to model
percentage, proportion and rate measurements. The idea is to take advantage of the hyper-
bolic arcsecant function to transpose the modeling capacities of the normal distribution
for the processing of data defined on the unit interval. We investigate general structural
properties of the new distribution. The model parameters are estimated by six different
methods. The simulation studies are performed to see the performances of these estimates.
The empirical findings indicate that the proposed model provides better fits than the well-
known unit probability distributions in the literature for both its univariate data modeling
and its regression modeling. It is hoped that the new distribution will attract attention in
the other disciplines.
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Appendix A

The proofs of our main results are contained in this appendix.

Proof of Proposition 1. Firstly, it is noticed that the hyperbolic secant function is the sym-
metrical on the (−∞, ∞) interval as well as it is the increasing function on the (−∞, 0)
interval and it is the decreasing function on the (0, ∞) interval. Based on the representation
X = sechY, where Y ∼ N(µ, σ2), the cdf of X can be determined as

F(x) = P(X ≤ x) = P(−∞ ≤ Y ≤ −arcsech x) + P(arcsech x ≤ Y ≤ ∞)

= Φ
(
− arcsech x− µ

σ

)
+ 1−Φ

(
arcsech x− µ

σ

)
= 2−Φ

(
arcsech x + µ

σ

)
−Φ

(
arcsech x− µ

σ

)
.

We get the declared definition of F(x, µ, σ). By differentiation of F(x, µ, σ) with

respect to x, since ∂(arcsech x)/∂x = −
(

x
√

1− x2
)−1

, the pdf f (x, µ, σ) follows, end-
ing the proof.

Proof of Proposition 2. In the case µ = 0, owing to Equation (4), some simplifications give

f (x, 0, σ1)

f (x, 0, σ2)
=

2φ((arcsech x)/σ1)/(σ1x
√

1− x2)

2φ((arcsech x)/σ2)/(σ2x
√

1− x2)
=

σ2

σ1
e

1
2 (σ1−σ2)

σ1+σ2
σ2

1 σ2
2
(arcsech x)2

.

Since arcsech x is a positive decreasing function, if σ1 > σ2, the above ratio function is
decreasing with respect to x as composition of an increasing exponential function and a
decreasing function. This proves the desired result.

Proof of Proposition 3. We propose to exploit the following characterization of the ASHN
distribution: We can express X as X = sechY with Y ∼ N(µ, σ2). Then, through the use of
the generalized version of the binomial formula, we obtain

Xr = (sechY)r = 2r erY

(1 + e2Y)r I(Y < 0) + I(Y = 0) + 2r e−rY

(1 + e−2Y)r I(Y > 0)

= 2r
+∞

∑
k=0

(
−r
k

)
e(2k+r)Y I(Y < 0) + I(Y = 0) + 2r

+∞

∑
k=0

(
−r
k

)
e−(2k+r)Y I(Y > 0).

Therefore, since P(Y = 0) = 0, we get

mr = 2r

{
+∞

∑
k=0

(
−r
k

)
E[e(2k+r)Y I(Y < 0)] +

+∞

∑
k=0

(
−r
k

)
E[e−(2k+r)Y I(Y > 0)]

}
.

In the distribution sense, one can write Y = µ + σU with U ∼ N(0, 1), implying that

E[e(2k+r)Y I(Y < 0)] = e(2k+r)µE[eσ(2k+r)U I(U < −µ/σ)] = e(2k+r)µ M
(
−σ(2k + r),

µ

σ

)
and

E[e−(2k+r)Y I(Y > 0)] = e−(2k+r)µ M
(
−σ(2k + r),−µ

σ

)
.

The stated result follows by combining the equations above together.
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