
MATEMATIQKI VESNIK

68, 3 (2016), 182–191
September 2016

originalni nauqni rad
research paper

NON-NULL HELICOIDAL SURFACES AS
NON-NULL BONNET SURFACES

Abdullah İnalcık and Soley Ersoy

Abstract. In this study, we obtain an equivalent of the Codazzi-Mainardi equations for
spacelike and timelike surfaces in three dimensional Lorentz space R3

1. Also, we find necessary
and sufficient conditions for spacelike and timelike helicoidal surfaces with non-null axis to be
Bonnet surfaces.

1. Introduction

Surfaces which admit a one-parameter family of isometric deformations pre-
serving the mean curvature are called Bonnet surfaces. In 1867, Bonnet proved
that any surface with constant mean curvature in R3(which is not totally umbili-
cal) is a Bonnet surface (see [2]). Lawson extended Bonnet’s results to any surface
with constant mean curvature in Riemannian 3-manifold of constant curvature c,
R3 (c), [10]. Also, it is proved that any Bonnet surface of non-constant mean cur-
vature depends on six arbitrary constants. The similar problems for surfaces in
space form R3 (c) and for spacelike surfaces in indefinite space form R3 (c) were
studied by Chen and Li in [4]. A geometric characterization of helicoidal surfaces
of constant mean curvature, the helicoidal surfaces as Bonnet surfaces and the
tangent developable surfaces as Bonnet surfaces were investigated by Roussos in
[15, 16] and [17], respectively. More recently, timelike surfaces in Lorentzian space
forms which admit a one-parameter family of isometric deformations preserving
the mean curvature were studied by Fujioka and Inoguchi in [8]. As it is known, a
helicoidal surface is a kind of some ruled surfaces and rotation surfaces and there
are remarkable studies on helicoidal surfaces in R3

1 [1, 6, 7, 9, 11].

In these regards, we have investigated spacelike and timelike helicoidal surfaces
with non-null axis as Bonnet surfaces and obtained the necessary and sufficient
conditions for the existence of these surfaces.
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2. Preliminaries

Let R3
1 be a Lorentzian 3-space with the nondegenerate metric tensor

g = −dx2
1 + dx2

2 + dx2
3

where {x1, x2, x3} is a system of the canonical coordinates in R3 [13].
Firstly, we introduce the basic knowledge and notions about the geometry

of surfaces in Lorentzian spaces. A surfaces M in R3 is given by the immersion
X : I ⊂ R2 → M ⊂ R3

1. A surface is said to be spacelike (resp. timelike) if the
induced metric on M is positive definite (resp. indefinite). Let {e1, e2, e3} be a local
orthonormal frame on M, such that e3 is a unit normal vector field on M. The unit
normal vector field e3 can be regarded as a map e3 : M → H2

+ if M is spacelike and
as a map e3 : M → S2

1 if M is timelike. Here H2
+ =

{
x ∈ R3

1 : 〈x, x〉 = −1, x1 > 0
}

is the hyperbolic space and S2
1 =

{
x ∈ R3

1 : 〈x, x〉 = 1
}

is the de-Sitter space. Also,
{e1, e2} comprise an orthonormal basis of the tangent space of M at x. Let µi be
the coframe of ei which is defined by µi (ej) = 〈ei, ej〉 = εiδij , 1 6 i, j 6 3. Then

dx = ε1µ1e1 + ε2µ2e2

where εi = 〈ei, ei〉 = ±1. The connection forms µij are defined by

dei =
3∑

j=1

εjµijej (2.1)

which satisfy µij + µji = 0. Then the structure equations become

dµi =
3∑

j=1

εjµj ∧ µji (2.2)

and

dµij =
3∑

k=1

εkµik ∧ µkj .

Since µ3 is a zero form on M, the exterior derivative of µ3 gives

ε1µ1 ∧ µ13 + ε2µ2 ∧ µ23 = 0. (2.3)

By the equation (2.3) and the Cartan Lemma, there exists a symmetric tensor hij

such that

µi3 =
3∑

j=1

εihijµj , hij = hji. (2.4)

The Gauss equation and mean curvature of M are defined as

dµ12 = ε3Kµ1 ∧ µ2 and H =
1
2
ε3 (ε1h11 + ε2h22)

where K is the Gauss curvature of M [13, 14].
A helicoidal motion group is a non-trivial one-parameter group of rigid mo-

tions of R3
1 and any element of such a group is called a helicoidal motion of R3

1.
Here, trivial cases are pure translation groups. Every helicoidal motion group is
completely determined by an axis l and a pitch h. Depending on the line l being
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spacelike, timelike or null, there are three types of motion. If the axis is space-
like (resp. timelike), then l is transformed to the x3-axis or x2-axis (resp. x1-axis).
Therefore we can always suppose that l is the x3-axis (resp. x1-axis) if l is spacelike
(resp. timelike). If the axis l is null, then we may assume that l is the line spanned
by (1, 0, 1). If Gl,h = {φt : t ∈ R} denotes the helicoidal motion group with axis l
and pitch h, for p = (a, b, c) ∈ R3

1, the image of p under any helicoidal motion of
one parameter group Gl,h is (see [6, 7, 11, 12].

φt (p) =




cosh t sinh t 0
sinh t cosh t 0

0 0 1







a
b
c


 + h




0
0
t


 if l is spacelike,

φt (p) =




1 0 0
0 cos t − sin t
0 sin t cos t







a
b
c


 + h




t
0
0


 if l is timelike,

φt (p) =




1− t2

2 t t2

2
−t 1 t
− t2

2 t 1 + t2

2







a
b
c


 + h




t
3

3 − t

t2
t
3

3 + t


 if l is null,

where t ∈ R. If we take h = 0, we obtain the rotations group related to axis l.
A helicoidal surface in Lorentzian space R3

1 is a surface invariant by unipara-
metric group Gl,h of helicoidal motion and it is given by immersion X (s, t) : I ⊂
R2 → M ⊂ R3

1. Here (s, t) is parameter of helicoidal surface. The images of the
t-curves are the trajectories of the helicoidal motions, while the s-curves are their
orthogonal trajectories parameterized by arc length in the induced metric such a
local parameterizations will be called natural parametrization of the helicoidal sur-
face. Notice that the first fundamental form in such parameters can be written as
dθ2 = ε1ds2 + ε2U

2dt2, where ε1 = 〈Xs, Xs〉, ε2U
2 = 〈Xt, Xt〉 and U = U (s) is a

function depending only s. If a helicoidal surface invariant under Gl,h meets the
axis l at some point and if l is non-null, then the whole axis is contained in the
surface. In this paper, we have omitted the case of helicoidal surfaces with null
axis.

3. Spacelike helicoidal surfaces as Bonnet surface

Let M be a spacelike surface with unit normal e3 which is a map from M to
H2

+ and {e1, e2} are spacelike tangent vectors with corresponding coframe {µ1, µ2}.
The Weingarten map of M is diagonalizable over R if and only if H2 + K > 0. If
H2 + K = 0, M is an umbilic surface. So, we will assume H2 + K > 0 and
J =

√
H2 + K. In this manner, let {x; e′1, e′2, e′3 = e3} be a another typical field

of orthonormal principal frame on M with the principal coframe {ω1, ω2} and the
corresponding connection forms {ωij} , 1 6 i, j 6 3. Then the first fundamental
form of M is

I = (µ1)
2 + (µ2)

2 = (ω1)
2 + (ω2)

2
.

There exists a function φ on M, such that

e′1 = cos φe1 + sin φe2, e′2 = − sinφe1 + cos φe2
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and
ω1 = cos φµ1 + sin φµ2, ω2 = − sin φµ1 + cosφµ2. (3.1)

Since e′1, e′2 are spacelike principal vector fields, The tensor h12 = h21 vanishes.
Also, by denoting the principal curvatures h11 = k1 and h22 = k2, we can say

ω13 = k1ω1, ω23 = k2ω2. (3.2)

Obviously, the Gauss and mean curvature are

H = −k1 + k2

2
, K = −k1k2,

respectively. Also, we get

J =
k1 − k2

2
.

Theorem 3.1. Let M be a spacelike surface with no umbilic points. Then the
Codazzi-Mainardi equations are equal to

dH = H1µ1 + H2µ2,

dσ = sin σ

(
H1

J
µ1 − H2

J
µ2

)
− cos σ

(
H2

J
µ1 +

H1

J
µ2

)
− ∗d ln J − 2µ12, (3.3)

where ∗ is the Hodge operator whose action on the 1-form is described by

∗µ1 = µ2, ∗µ2 = −µ1, (∗)2 = −1.

Proof. The exterior differentiation of the principal coframe (3.1) gives

dω1 = ω2 ∧ (−dφ− µ12) , dω2 = ω1 ∧ (dφ + µ12) .

By the structure equations (2.2), the connection form associated to the principal
coframe is ω12 = dφ + µ12, so that

dφ = ω12 − µ12. (3.4)

With the smooth functions p and q, we can write ω12 = pω1 + qω2 where p and q
are determined uniquely by the structure equations (2.2). Thus, by the aid of the
equations (2.2) and (3.2), the Codazzi-Mainardi equations can be reduced to

(dk1 − p (k1 − k2)ω2) ∧ ω1 = 0, (dk2 − q (k1 − k2) ω1) ∧ ω2 = 0.

On the other hand, if we set

dH = −dk1 + dk2

2
= uω1 + vω2,

we get

dk1 = (−2Jq − 2u)ω1 + 2Jpω2 = 0, dk2 = 2Jqω1 + (−2v − 2Jp)ω2 = 0.

Dividing dk1 − dk2 by 2J gives us

d ln J = −u

J
ω1 +

v

J
ω2 + 2 (−qω1 + pω2) .
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If we apply the Hodge operator to the last equation, we get

ω12 = − 1
2J

(vω1 + uω2)− 1
2
∗ d ln J. (3.5)

Since dH = H1µ1 +H2µ2 = uω1 + vω2, the relationships between u, v and H1, H2

are
u = H1 cos φ + H2 sin φ, v = −H1 sin φ + H2 cos φ.

By the equations (3.4), (3.5) and the last equation, we find

d2φ = sin 2φ

(
H1

J
µ1 − H2

J
µ2

)
− cos 2φ

(
H2

J
µ1 +

H1

J
µ2

)
− ∗d ln J − 2µ12.

Finally, substituting σ = 2φ into the above equation completes the proof.
Now, let us establish a principal coframe of a spacelike helicoidal surface with

non-null axis such that
µ1 = ds, µ2 = q (s) dt (3.6)

where s is the arc length of curves orthogonal to orbits measured from a fixed orbit
and t is time along orbits from a fixed t = t0. The t− constant curves are carried
along the orbits by helicoidal motions and foliate the surface. An orthonormal
frame {e1, e2} is determined along these coordinate curves with e2 tangent to the
orbits. By the equations (2.2) and (3.6), it is easily seen that

µ12 =
q′ (s)
q (s)

µ2 = η (s) µ2.

Hence the µ1-curves are geodesic curves and the µ2-curves have the geodesic cur-
vature equal to

η (s) =
d

ds
ln (|q (s)|) .

Moreover, dJ = dk1−dk2
2 , so we can put dJ = −J1µ1 + J2µ2 and we obtain

d ln J = −J1

J
µ1 +

J2

J
µ2.

Along the each orbit, k1, k2, µ and φ depend on s, then H2 = J2 = 0. Hence the
relation (3.3) becomes

dσ = sin σ

(
H1

J

)
µ1 − cos σ

(
H1

J

)
µ2 +

J1

J
µ2 − 2η (s)µ2.

Since σ = σ (s), this implies

dσ

ds
= sin σ

(
dH
ds

J

)
(3.7)

and

η (s) =
1
2

(
dJ
ds

J
− cos 2φ

dH
ds

J

)
.

Theorem 3.2. A spacelike helicoidal surface M with H2 + K > 0 in R3
1 has

a one parameter family of non-trivial isometric deformation preserving the mean
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curvature i.e., M is a spacelike Bonnet surfaces if and only if the following relation
is satisfied

d

ds

(
dH
ds

J

)
+ cos σ (s)

(
dH
ds

J

)2

+

(
dH
ds

J

)
d ln (|q (s)|)

ds
= 0, (3.8)

where H = H (s) is the non-constant mean curvature.

Proof. The criterion of Chern given in [3] for the existence of Bonnet surface
is dα1 = 0 and dα2 = α1 ∧ α2, where α1 = u

J ω1 − v
J ω2, α2 = v

J ω1 + u
J ω2 and

dH = uω1 + vω2. By substituting u and v in the equations ω1 = cos σ (s) ds +
sin σ (s) q (s) dt, ω2 = − sin σ (s) ds + cos σ (s) q (s) dt, we get

α1 =
(

H1

J
cos 2φ +

H2

J
sin 2φ

)
ds +

(
H1

J
sin 2φ− H2

J
cos 2φ

)
q (s) dt,

α2 =
(
−H1

J
sin 2φ +

H2

J
cos 2φ

)
ds +

(
H1

J
cos 2φ +

H2

J
sin 2φ

)
q (s) dt.

By substituting the equation (3.7) into the exterior derivative of these last two
equations, it is seen that Chern’s criterion is verified if and only if the relation (3.8)
satisfied. This completes the proof.

By the equation (3.7), it is easily seen that
(

dH
ds

J

)
=

1
sinσ (s)

dσ

ds
.

If we differentiate the last equation with respect to s, we find

d

ds

(
dH
ds

J

)
=

d

ds

(
dσ

ds

)
1

sin σ (s)
−

(
dσ

ds

)2 cos σ (s)
sin2σ (s)

.

By comparing the last equation with (3.8), we get

d

ds

(
dσ

ds

)
1

sin σ (s)
+

(
dσ

ds

)
1

sin σ (s)
q′ (s)
q (s)

= 0.

The solution of this ordinary differential equation gives us the following remark.
Remark 3.1. The ordinary differential equation (3.8) is equivalent to

q (s)

(
dH
ds

J

)
sin σ (s) = constant

with non-constant mean curvature H = H (s).

4. Timelike helicoidal surface as Bonnet surface

Let M be a timelike surface with unit normal e3 which is a map from M to de-
Sitter space S2

1 . We can choose a local orthonormal frame field {x; e1, e2, e3} on M,
such that e1 is a spacelike tangent vector and e2 is a timelike tangent vector at x.
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Obviously, the normal vector e3 is spacelike at x. If we take into consideration
another field of orthonormal principal frame {x; e′1, e′2, e′3 = e3} with principal
coframe {ω1, ω2} and corresponding to the connection forms {ωij}, 1 6 i, j 6 3,
the first fundamental form of M is

I = (µ1)
2 − (µ2)

2 = (ω1)
2 − (ω2)

2
. (4.1)

The function φ exists on M as follows

e′1 = cosh φe1 + sinh φe2, e′2 = sinh φe1 + cosh φe2

and
ω1 = cosh φµ1 + sinh φµ2, ω2 = sinh φµ1 + cosh φµ2. (4.2)

The Weingarten map has real eigenvector if and only if H2−K > 0. So, we suppose
that H2−K > 0, that is, M has no umbilic points. Since e′1, e′2 are principal vector
fields, we can give

ω13 = k1ω1, ω23 = −k2ω2, h12 = h21 = 0,

where the principal curvatures are h11 = k1 and h22 = k2 in (2.4). The mean and
Gauss curvature of M are

H =
k1 − k2

2
, K = −k1k2,

respectively. If we define J =
√

H2 −K, J = k1+k2
2 > 0 is obtained.

In these regards, we can give the following theorem related to the Codazzi-
Mainardi equations for timelike surface.

Theorem 4.1. The Codazzi-Mainardi equations for timelike surface with H2−
K > 0 are

dH = H1µ1 −H2µ2

and

dσ = − sinhσ

(
H1

J
µ1 +

H2

J
µ2

)
− cosh σ

(
H2

J
µ1 +

H1

J
µ2

)
−∗d ln J +2µ12, (4.3)

where ∗ is the Hodge operator such that

∗µ1 = µ2, ∗µ2 = µ1, (∗)2 = 1.

Proof. By the equation (4.2), we get

dω1 = −ω2 ∧ (dφ− µ12) , dω2 = ω1 ∧ (−dφ + µ12) .

Thus, the connection form associated to the principal coframe is ω12 = −dφ + µ12.
This implies

dφ = −ω12 + µ12. (4.4)

By the equation (2.2), the Codazzi-Mainardi equations for M are

dω13 = −ω12 ∧ ω23, dω23 = ω21 ∧ ω12
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and they can be reduced to

(dk1 + p (k1 + k2)ω2) ∧ ω1 = 0, (−dk2 − q (k1 + k2) ω1) ∧ ω2 = 0,

where ω12 = pω1 + qω2. Considering dk1−dk2
2 = uω1 − vω2, we get

dk1 = (2u− 2Jq)ω1 − 2Jpω2 = 0, dk2 = −2Jqω1 + (2v − 2Jp)ω2 = 0.

If we divide the addition of the last two relation by 2J , we obtain

d ln J =
u

J
ω1 +

v

J
ω2 + 2 (−qω1 − pω2) .

By use of Hodge operator, we have

ω12 =
1
2J

(vω1 + uω2) +
1
2
∗ d ln J. (4.5)

If we compare dH = uω1 − vω2 and dH = H1µ1 −H2µ2 with ω1, ω2 expressed in
terms of µ1 and µ2, we get

u = H1 cosh φ + H2 sinhφ, v = H1 sinh φ + H2 cosh φ.

The equations (4.4), (4.5) and the last equations give us

d2φ = − sinh 2φ

(
H1

J
µ1 +

H2

J
µ2

)
− cosh 2φ

(
H2

J
µ1 +

H1

J
µ2

)
− ∗d ln J + 2µ12.

If we take σ = 2φ, then we complete the proof.
For a timelike helicoidal surface with non-null axis, there is the relation

µ12 =
q′ (s)
q (s)

µ2 = η (s) µ2,

where the orthonormal corresponding coframe is defined by

µ1 = ds, µ2 = q (s) dt.

Since dJ = dk1+dk2
2 , we can consider dJ = −J1µ1 − J2µ2, and then

∗d ln J =
J2

J
µ1 +

J1

J
µ2.

By the fact that k1, k2, µ and φ depends on s we can say that H2 = J2 = 0. So
we can rewrite the equation (4.3) as follows

dσ = − sinh σ

(
H1

J

)
µ1 − cosh σ

(
H1

J

)
µ2 − J1

J
µ2 − 2η (s)µ2.

By the last equation,

dσ

ds
= − sinh 2φ

(
dH
ds

J

)
, η (s) =

1
2

(
cosh 2φ

dH
ds

J
+

dJ
ds

J

)

are obtained.

Theorem 4.2. Let M be a timelike helicoidal surface with H2−K > 0 in R3
1.

Then M is a Bonnet surface if and only if there exists a relation as follows

d

ds

(
dH
ds

J

)
− coshσ (s)

(
dH
ds

J

)2

+

(
dH
ds

J

)
d ln (|q (s)|)

ds
= 0, (4.6)

where H is a non-constant mean curvature.
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Proof. In [5], it is proved that every timelike constant mean curvature surface
with no umbilic points is a timelike Bonnet surface and also, it is mentioned that
M with non-constant mean curvature is timelike Bonnet surface if and only if

dα1 = 0, dα2 = α1 ∧ α2,

where α1 = u
J ω1 + v

J ω2, α2 = v
J ω1 + u

J ω2 and dH = uω1 − vω2. If we substitute
the relations

ω1 = cosh σ (s) ds + sinh σ (s) q (s) dt, ω2 = sinh σ (s) ds + cosh σ (s) q (s) dt

and (4.1) into the exterior derivative of α1 and α2, we verify the necessary and
sufficient condition of a timelike helicoidal surface being a timelike Bonnet surface.
The solution of the differential equation (4.6) can be obtained in a similar manner.

Remark 4.1. The ordinary differential equation (4.6) is equivalent to

q (s)

(
dH
ds

J

)
sinh 2φ = constant,

where H is non-constant.
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López for his comments and suggestions to improve the presentation of this paper.

REFERENCES

[1] Ch. Baba-Hamed, M. Bekkar, Helicoidal surfaces in the three-dimensional Lorentz-Minkow-
ski space satisfying ∆ri = λiri, Int. J. Contemp. Math. Sci., 4 5–8 (2009), 311-327.
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